Fields \(\mathbb{Q}(\sqrt[3]{d},\zeta_3)\) whose \(3\)-class group is of type \((9,3)\)

Let \(\mathrm{k}=\mathbb{Q}(\sqrt[3]{d},\zeta_3)\), with \(d\) a cube-free positive integer. Let \(C_{\mathrm{k},3}\) be the \(3\)-component of the class group of \(\mathrm{k}\). By the aid of genus theory, arithmetic proprieties of the pure cubic field \(\mathbb{Q}(\sqrt[3]{d})\) and some results o...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Aouissi, Siham, Talbi, Mohamed, Ismaili, Moulay Chrif, Azizi, Abdelmalek
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 11.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Let \(\mathrm{k}=\mathbb{Q}(\sqrt[3]{d},\zeta_3)\), with \(d\) a cube-free positive integer. Let \(C_{\mathrm{k},3}\) be the \(3\)-component of the class group of \(\mathrm{k}\). By the aid of genus theory, arithmetic proprieties of the pure cubic field \(\mathbb{Q}(\sqrt[3]{d})\) and some results on the \(3\)-class group \(C_{\mathrm{k},3}\), we are moving towards the determination of all integers \(d\) such that \(C_{\mathrm{k},3} \simeq \mathbb{Z}/9\mathbb{Z}\times \mathbb{Z}/3\mathbb{Z}\).
ISSN:2331-8422
DOI:10.48550/arxiv.1805.04963