A uniqueness criterion for measure-valued solutions of scalar hyperbolic conservation laws
We prove existence and uniqueness of Radon measure-valued solutions of the Cauchy problem $$ \begin{cases} u_t+[\varphi(u)]_x=0 & \text{in } \mathbb{R}\times (0,T) \\ u=u_0\ge 0 &\text{in } \mathbb{R}\times \{0\}, \end{cases} $$ where \(u_0\) a positive Radon measure whose singular part is a...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
27.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We prove existence and uniqueness of Radon measure-valued solutions of the Cauchy problem $$ \begin{cases} u_t+[\varphi(u)]_x=0 & \text{in } \mathbb{R}\times (0,T) \\ u=u_0\ge 0 &\text{in } \mathbb{R}\times \{0\}, \end{cases} $$ where \(u_0\) a positive Radon measure whose singular part is a finite superposition of Dirac masses, and \(\varphi\in C^2([0,\infty))\) is bounded. The novelty of the paper is the introduction of a compatibility condition which, combined with standard entropy conditions, guarantees uniqueness. |
---|---|
ISSN: | 2331-8422 |