Fabrication of hybrid coating material of polypropylene itaconate containing MOF-5 for CO^sub 2^ capture
Novel hybrid coating material based on polypropylene itaconate (PPIA) and MOF-5 [Zn4O(BDC)3] (BDC: benzene-1,4-dicarboxylic acid) has been successfully prepared and characterized. Herein, the influence of certain percentage additions of MOF-5 (from 1, 3, 5, 10, 20, and 40 wt.%) into PPIA on its stru...
Saved in:
Published in | Progress in organic coatings Vol. 115; p. 49 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier BV
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Novel hybrid coating material based on polypropylene itaconate (PPIA) and MOF-5 [Zn4O(BDC)3] (BDC: benzene-1,4-dicarboxylic acid) has been successfully prepared and characterized. Herein, the influence of certain percentage additions of MOF-5 (from 1, 3, 5, 10, 20, and 40 wt.%) into PPIA on its structure, morphology, density, and thermal stability were investigated. However, extensive damage was observed in MOF-5 structures according to PXRD, FTIR and nitrogen sorption isotherm analyses. The obtained materials were applied for CO2 capture and monitored by the volumetric method. The higher percentage of MOF-5 incorporated into PPIA induced higher CO2 adsorption. A significant increase of CO2 capture was seen after the addition of 1–20 wt.% of MOF-5 into the PPIA, while an addition of 40 wt.% of MOF-5 indicated there is no more benefit in increasing the MOF-5 concentration in the composite and reached a CO2 adsorption capacity of about 65 wt.% of the adsorption value of MOF-5 only. However, the incorporation of MOF-5 into PPIA caused the thermal stability of the hybrid coating material to be lower than the original PPIA coating and the MOF-5 itself. The texture of the film after addition of about 20 wt.% of MOF-5 changed from a smooth to a coarser and denser form. This study may open the way to investigating how PPIA coating containing MOF-5 could serve as a coating material with the function of CO2 capture to contribute to reducing the greenhouse effect. |
---|---|
ISSN: | 0300-9440 1873-331X |