A new $\\kappa$-deformed parametric model for the size distribution of wealth
It has been pointed out by Patriarca et al. (2005) that the power-law tailed equilibrium distribution in heterogeneous kinetic exchange models with a distributed saving parameter can be resolved as a mixture of Gamma distributions corresponding to particular subsets of agents. Here, we propose a new...
Saved in:
Published in | IDEAS Working Paper Series from RePEc |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
St. Louis
Federal Reserve Bank of St. Louis
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | It has been pointed out by Patriarca et al. (2005) that the power-law tailed equilibrium distribution in heterogeneous kinetic exchange models with a distributed saving parameter can be resolved as a mixture of Gamma distributions corresponding to particular subsets of agents. Here, we propose a new four-parameter statistical distribution which is a $\\kappa$-deformation of the Generalized Gamma distribution with a power-law tail, based on the deformed exponential and logarithm functions introduced by Kaniadakis(2001). We found that this new distribution is also an extension to the $\\kappa$-Generalized distribution proposed by Clementi et al. (2007), with an additional shape parameter $\\nu$, and properly reproduces the whole range of the distribution of wealth in such heterogeneous kinetic exchange models. We also provide various associated statistical measures and inequality measures. |
---|