Metal-organic framework derived nanoporous carbon/Co^sub 3^O^sub 4^ composite electrode as a sensing platform for the determination of glucose and high-performance supercapacitor

Here, we demonstrate the controlled synthesis of nanoporous carbon and cobalt oxide (NPC_Co3O4) composite from a single precursor source zeolitic imidazolate framework-67, which leads to some new interesting electrochemical properties. The composite shows an outstanding electrochemical performance f...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 127; p. 366
Main Authors Haldorai, Yuvaraj, Choe, Sang Rak, Huh, Yun Suk, Han, Young-Kyu
Format Journal Article
LanguageEnglish
Published New York Elsevier BV 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Here, we demonstrate the controlled synthesis of nanoporous carbon and cobalt oxide (NPC_Co3O4) composite from a single precursor source zeolitic imidazolate framework-67, which leads to some new interesting electrochemical properties. The composite shows an outstanding electrochemical performance for measuring the oxidation of glucose in alkaline solution. The differential pulse voltammetric response of the NPC-Co3O4 composite electrode for the sensing of glucose exhibits a linear relation with the concentration range of 5 × 10-12-2.05 × 10-10 M and a low detection limit of 2 × 10-12 M. The fabricated sensor shows high sensitivity, reliable reproducibility, and good selectivity. The sensor, when used for the direct determination of glucose in blood serum samples, shows good recovery (98.5-101.0%), suggesting its feasibility for biomedical applications. In addition, in a given potential range of 0-1 V, the composite exhibits a high capacitance (885 F g-1 at a current density of 2.5 A g-1) and long cycle life (~94% capacitance retention after 10,000 cycles).
ISSN:0008-6223
1873-3891