Long-range memory model of trading activity and volatility
Earlier we proposed the stochastic point process model, which reproduces a variety of self-affine time series exhibiting power spectral density S(f) scaling as power of the frequency f and derived a stochastic differential equation with the same long range memory properties. Here we present a stocha...
Saved in:
Published in | IDEAS Working Paper Series from RePEc |
---|---|
Main Authors | , |
Format | Paper |
Language | English |
Published |
St. Louis
Federal Reserve Bank of St. Louis
01.01.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Earlier we proposed the stochastic point process model, which reproduces a variety of self-affine time series exhibiting power spectral density S(f) scaling as power of the frequency f and derived a stochastic differential equation with the same long range memory properties. Here we present a stochastic differential equation as a dynamical model of the observed memory in the financial time series. The continuous stochastic process reproduces the statistical properties of the trading activity and serves as a background model for the modeling waiting time, return and volatility. Empirically observed statistical properties: exponents of the power-law probability distributions and power spectral density of the long-range memory financial variables are reproduced with the same values of few model parameters. |
---|