Avaccine strategy that protects against genital herpes by establishing local memory T cells

Most successful existing vaccines rely on neutralizing antibodies, which may not require specific anatomical localization of B cells. However, efficacious vaccines that rely on T cells for protection have been difficult to develop, as robust systemic memory T-cell responses do not necessarily correl...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 491; no. 7424; p. 463
Main Authors Shin, Haina, Iwasaki, Akiko
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group 15.11.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Most successful existing vaccines rely on neutralizing antibodies, which may not require specific anatomical localization of B cells. However, efficacious vaccines that rely on T cells for protection have been difficult to develop, as robust systemic memory T-cell responses do not necessarily correlate with host protection1. In peripheral sites, tissue-resident memory T cells provide superior protection compared to circulating memory T cells2,3. Here we describe a simple and non-inflammatory vaccine strategy that enables the establishment of a protective memory T-cell pool within peripheral tissue. The female genital tract, which is a portal of entry for sexually transmitted infections, is an immunologically restrictive tissue that prevents entry of activated T cells in the absence of inflammation or infection4. To overcome this obstacle, we developed a vaccine strategy that we term 'prime and pull' to establish local tissue-resident memory T cells at a site of potential viral exposure. This approach relies on two steps: conventional parenteral vaccination to elicit systemic T-cell responses (prime), followed by recruitment of activated T cells by means of topical chemokine application to the restrictive genital tract (pull), where such T cells establish a long-term niche and mediate protective immunity. In mice, prime and pull protocol reduces the spread of infectious herpes simplex virus 2 into the sensory neurons and prevents development of clinical disease. These results reveal a promising vaccination strategy against herpes simplex virus 2, and potentially against other sexually transmitted infections such as human immunodeficiency virus. [PUBLICATION ABSTRACT]
ISSN:0028-0836
1476-4687