Performance of three handheld NIR spectrometers for predicting grass silage quality

Description of the subject. Feed is the main variable cost in dairy farming. More efficient use of forage resources is one way to reduce production costs. Improving forage resource efficiency can start with a better assessment of the dry matter content and nutritional value of forages. Currently, an...

Full description

Saved in:
Bibliographic Details
Published inBiotechnologie, agronomie, société et environnement Vol. 26
Main Authors Juan Antonio Fernández Pierna, Philippe Vermeulen, Nicolas Chamberland, Virginie Decruyenaere, Eric Froidmont, Olivier Minet, Bernard Lecler, Vincent Baeten
Format Journal Article
LanguageEnglish
Published Université de Liège 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Description of the subject. Feed is the main variable cost in dairy farming. More efficient use of forage resources is one way to reduce production costs. Improving forage resource efficiency can start with a better assessment of the dry matter content and nutritional value of forages. Currently, analytical process time is often long and analyses are not repeatable while the quality of the fodder changes over time. Being able to analyze forages directly on-farm would make it possible to adapt the animal diet according to forage variability, in order to improve the profitability of the farm. Objectives. To propose in situ rapid analysis solutions to better characterize dry matter content and the chemical composition of fodder for assessing its feeding value. Method. The performance of three recently developed spectroscopic handheld devices, namely the Viavi’s MicroNIR 1700, the Ocean Insight’s FlameNIR and the Malvern Panalytical’s ASD FieldSpec 4, are evaluated to predict dry matter content and the chemical composition of fresh and unground grass silage in the framework of precision feeding and compared to the reference benchtop Foss’s XDS instrument. The conventional global PLS and local PLS are used as multivariate calibration methods.Results. The assessed handheld devices allow the dairy farmer to obtain a relatively precise quantitative prediction of the dry matter and crude fiber content (2.5% and 1.8% respectively on average, in terms of ratios between the local PLS error on fresh forage and the reference method error) in order to adapt the livestock diet. Crude protein, even if the prediction accuracy is lower (6.4%), is still well predicted. Higher errors are obtained for ash (9.2%), crude neutral (6.8%) and acid detergent fiber (6.9%). Conclusions. The studied devices should allow the dairy farmer to obtain a relatively precise quantitative prediction of those quality parameters in order to directly adapt the quantity of forage distributed to the animals. Performances could probably be improved by including more samples/spectra into the databases. Performance de trois spectromètres NIR portatifs pour prédire la qualité de l'ensilage d’herbeDescription du sujet. L'alimentation des animaux est la principale charge variable en élevage laitier. Une utilisation plus efficiente des ressources fourragères est un moyen de réduire les couts de production. L'amélioration de ces ressources peut commencer par une meilleure évaluation de la teneur en matière sèche et de la valeur nutritionnelle des fourrages. Actuellement, le temps du processus analytique est souvent long et les analyses ne sont pas régulières, alors que la qualité du fourrage évolue dans le temps. Pouvoir analyser les fourrages directement à la ferme permettrait d'adapter l'alimentation des animaux en fonction de la variabilité de ce fourrage afin d'améliorer la rentabilité de la ferme.Objectifs. L'objectif est de proposer des solutions d'analyses rapides, in situ, pour mieux caractériser la teneur en matière sèche et la composition chimique des fourrages pour évaluer leur valeur alimentaire. Méthode. Les performances de trois spectromètres portables récemment développés, à savoir le Viavi MicroNIR 1700, l'Ocean Insight FlameNIR et le Malvern Panalytical ASD FieldSpec 4, sont évaluées pour prédire la teneur en matière sèche et la composition chimique de l'ensilage frais et non broyé d'herbe, dans le cadre de l’alimentation de précision. Résultats. Dans l'état actuel de la recherche, ces appareils portables permettent au producteur laitier d'obtenir une prédiction quantitative relativement précise de la teneur en matière sèche et en fibre brute (2,5 % et 1,8 % respectivement en termes de ratios entre l'erreur NIR sur fourrage frais et l'erreur de la méthode de référence) afin d'adapter l'alimentation du cheptel bovin laitier. Les protéines brutes, même si la précision est plus faible (6,4 %), sont quand même bien prédites. Des erreurs plus élevées sont obtenues pour les cendres (9,2 %) et pour les fibres insolubles dans les détergents neutres (6,8 %) et acides (6,9 %). Conclusions. Les dispositifs étudiés doivent permettre à l'éleveur d'obtenir une prédiction quantitative relativement précise de ces paramètres de qualité afin d'adapter directement la quantité de fourrage distribuée aux animaux. Ces performances pourraient probablement être améliorées en incluant plus d'échantillons/spectres dans les bases de données.
Bibliography:309-318
Volume 26 (2022)
Special issue : 150 years of CRA-W
ISSN:1370-6233
1780-4507