Unraveling Morphology and Chemistry Dynamics in Fluoroethylene Carbonate Generated Silicon Anode Solid Electrolyte Interphase Across Delithiated and Lithiated States: Relative Cycling Stability Enabled by an Elastomeric Polymer Matrix
The silicon solid electrolyte interphase (SEI) faces cyclical cracking and reconstruction due to the ∼350% volume expansion. Understanding the SEI dynamic morphology and chemistry evolution from delithiated to lithiated states is thereby paramount to engineering a stable Si anode. Fluoroethylene car...
Saved in:
Published in | Journal of the Electrochemical Society Vol. 171; no. 4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
The Electrochemical Society
25.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The silicon solid electrolyte interphase (SEI) faces cyclical cracking and reconstruction due to the ∼350% volume expansion. Understanding the SEI dynamic morphology and chemistry evolution from delithiated to lithiated states is thereby paramount to engineering a stable Si anode. Fluoroethylene carbonate (FEC) is a preferred additive with widely demonstrated enhancement of the Si cycling. Thus, insights into the dynamics of the FEC-SEI may provide hints toward engineering the Si interface. Herein, complementary ATR-FTIR, AFM, tip IR, and XPS probing reveal the presence of an elastomeric polycarbonate-like matrix in the FEC-generated SEI which is absent from the FEC-free SEI. Adding FEC to the baseline 1 M LiPF
6
in EC:EMC (1:1) electrolyte promotes formation of a thinner and more conformal SEI, and subdues morphology and chemistry changes between consecutive half-cycles. From AFM, morphological stabilization of the FEC-SEI occurs earlier. Furthermore, conventional SEI biproducts such as Li
2
CO
3
and LiEDC appear in reduced quantities in the FEC-SEI implying a reduced quantity of Li-consuming species. The thin polymeric FEC-SEI enables deeper (de)lithiation of silicon. In conclusion, the enhanced mechanical compliance, chemical invariance, and reduced Li inventory consumption of the FEC-SEI are logically the key features underlying the Si cycling enhancement by FEC. |
---|---|
Bibliography: | EE0009185 USDOE USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO) |
ISSN: | 0013-4651 1945-7111 |