KamLAND SENSITIVITY TO NEUTRINOS FROM PRE-SUPERNOVA STARS

In the late stages of nuclear burning for massive stars (M > 8 M{sub ⊙}), the production of neutrino–antineutrino pairs through various processes becomes the dominant stellar cooling mechanism. As the star evolves, the energy of these neutrinos increases and in the days preceding the supernova a...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 818; no. 1
Main Authors Asakura, K., Gando, A., Gando, Y., Hachiya, T., Hayashida, S., Ikeda, H., Inoue, K., Ishidoshiro, K., Ishikawa, T., Ishio, S., Koga, M., Matsuda, S., Mitsui, T., Motoki, D., Nakamura, K., Obara, S., Oura, T., Shimizu, I., Shirahata, Y., Shirai, J., Collaboration: KamLAND Collaboration, others, and
Format Journal Article
LanguageEnglish
Published United States 10.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the late stages of nuclear burning for massive stars (M > 8 M{sub ⊙}), the production of neutrino–antineutrino pairs through various processes becomes the dominant stellar cooling mechanism. As the star evolves, the energy of these neutrinos increases and in the days preceding the supernova a significant fraction of emitted electron anti-neutrinos exceeds the energy threshold for inverse beta decay on free hydrogen. This is the golden channel for liquid scintillator detectors because the coincidence signature allows for significant reductions in background signals. We find that the kiloton-scale liquid scintillator detector KamLAND can detect these pre-supernova neutrinos from a star with a mass of 25 M{sub ⊙} at a distance less than 690 pc with 3σ significance before the supernova. This limit is dependent on the neutrino mass ordering and background levels. KamLAND takes data continuously and can provide a supernova alert to the community.
ISSN:0004-637X
1538-4357