Syntheses and properties of a family of new compounds RE{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} (RE=La, Pr, Nd, Sm–Ho) with an ordered pyrochlore structure

Isostructural compounds RE{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} (RE=La, Pr, Nd, Sm–Ho) with an ordered pyrochlore structure were synthesized. The structure of La{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} was solved ab initio based on powder XRD data, and refined by combining with high resolution neutron diffra...

Full description

Saved in:
Bibliographic Details
Published inJournal of solid state chemistry Vol. 217
Main Authors Li, Kuo, Hu, Yufei, Wang, Yingxia, Kamiyama, Takashi, Wang, Bingwu, Li, Zhaofei, Lin, Jianhua
Format Journal Article
LanguageEnglish
Published United States 15.09.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Isostructural compounds RE{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} (RE=La, Pr, Nd, Sm–Ho) with an ordered pyrochlore structure were synthesized. The structure of La{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} was solved ab initio based on powder XRD data, and refined by combining with high resolution neutron diffraction data. La{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} crystallizes in the space group R-3m with the unit cell parameters a=7.52954(2) Å and c=17.59983(6) Å. The structures of other members in this family are confirmed by Rietveld refinement using powder X-ray diffraction data. The cations (RE, Sb and Co) in RE{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} are orderly distributed, presenting as [RE{sub 3}Co][Sb{sub 3}Co]O{sub 14} formula, and giving rise to two distinctive Kagome lattices constructed by RE{sup 3+} and Sb{sup 5+}, respectively. Co{sup 2+} occupies 8-coordinated and 6-coordinated environments, showing low spin (S=1/2) and high spin (S=3/2) states respectively. The magnetic susceptibility and UV–visual spectroscopy supports the magnetic observation. TDDFT calculation was performed to interpret the electronic states. The compounds [RE{sub 3}Co][Sb{sub 3}Co]O{sub 14} provide a profound example in which the ideal 2D Kagome lattice is derived from the 3D pyrochlore-type structure by an ordered distribution of the metal cations. - Graphical abstract: La{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} crystallizes in a pyrochlore related structure with an ordered distribution of cations, giving rise to two sets of ideal 2D Kagome lattices formed by La{sup 3+} or Sb{sup 5+} respectively. This rhombohedral pyrochlore is a tolerant structure for stable compounds composed by many light rare-earth and d-transition elements. Substituting Zn{sup 2+} or Mg{sup 2+} for Co{sup 2+} will provide a series of compounds useful for studying magnetic interactions in the rare-earth Kagome lattices. - Highlights: • Pyrochlore-type La{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} shows an ordered distribution of cations in its structure. • It presents two sets of ideal 2D Kagome lattices formed by La{sup 3+} or Sb{sup 5+}, respectively. • A family of isostructural compounds RE{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} (RE=Pr, Nd, Sm–Ho) were realized. • Co{sup 2+} presents two spin states with S=1/2, 3/2 due to two coordinated environments.
ISSN:0022-4596
1095-726X
DOI:10.1016/J.JSSC.2014.05.003