Cationic disorder and Mn{sup 3+}/Mn{sup 4+} charge ordering in the B′ and B″ sites of Ca{sub 3}Mn{sub 2}NbO{sub 9} perovskite: a comparison with Ca{sub 3}Mn{sub 2}WO{sub 9}

We describe the preparation, crystal structure determination, magnetic and transport properties of two novel Mn-containing perovskites, with a different electronic configuration for Mn atoms located in B site. Ca{sub 3}Mn{sup 3+}{sub 2}WO{sub 9} and Ca{sub 3}Mn{sup 3+/4+}{sub 2}NbO{sub 9} were synth...

Full description

Saved in:
Bibliographic Details
Published inJournal of solid state chemistry Vol. 210; no. 1
Main Authors López, C.A., Centro Atómico Bariloche, Comisión Nacional de Energía Atómica and Instituto Balseiro, Universidad Nacional de Cuyo, 8400S.C. de Bariloche, Río Negro, Saleta, M.E., Pedregosa, J.C., Sánchez, R.D., Alonso, J.A.
Format Journal Article
LanguageEnglish
Published United States 15.02.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We describe the preparation, crystal structure determination, magnetic and transport properties of two novel Mn-containing perovskites, with a different electronic configuration for Mn atoms located in B site. Ca{sub 3}Mn{sup 3+}{sub 2}WO{sub 9} and Ca{sub 3}Mn{sup 3+/4+}{sub 2}NbO{sub 9} were synthesized by standard ceramic procedures; the crystallographic structure was studied from X-ray powder diffraction (XRPD) and neutron powder diffraction (NPD). Both phases exhibit a monoclinic symmetry (S.G.: P2{sub 1}/n); Ca{sub 3}Mn{sub 2}WO{sub 9} presents a long-range ordering over the B sites, whereas Ca{sub 3}Mn{sub 2}NbO{sub 9} is strongly disordered. By “in-situ” NPD, the temperature evolution of the structure study presents an interesting evolution in the octahedral size (〈Mn–O〉) for Ca{sub 3}Mn{sub 2}NbO{sub 9}, driven by a charge ordering effect between Mn{sup 3+} and Mn{sup 4+} atoms, related to the anomaly observed in the transport measurements at T≈160 K. Both materials present a magnetic order below T{sub C}=30 K and 40 K for W and Nb materials, respectively. The magneto-transport measurements display non-negligible magnetoresistance properties in the paramagnetic regime. - Graphical abstract: Comparison between the octahedron size and the magnetic behaviour for Ca{sub 3}Mn{sub 2}NbO{sub 9} in the temperature region where the charge and magnetic order occur. Display Omitted - Highlights: • Two novel Mn-containing double perovskites were obtained by solid-state reactions. • Both double perovskites are monoclinic (P2{sub 1}/n) determined by XRPD and NPD. • Ca{sub 3}Mn{sub 2}WO{sub 9} contains Mn{sup 3+} while Ca{sub 3}Mn{sub 2}NbO{sub 9} includes mixed-valence cations Mn{sup 3+}/Mn{sup 4+}. • Ca{sub 3}Mn{sub 2}NbO{sub 9} presents a charge-ordering effect between Mn{sup 3+} and Mn{sup 4+} evidenced by NPD. • The magnetic and transport studies evidenced the charge ordering in Ca{sub 3}Mn{sub 2}NbO{sub 9}.
ISSN:0022-4596
1095-726X
DOI:10.1016/J.JSSC.2013.10.039