Syntheses, crystal structures, and properties of three new metal selenites Na{sub 2}Co{sub 2}(SeO{sub 3}){sub 3}, Na{sub 2}Co{sub 1.67}Ni{sub 0.33}(SeO{sub 3}){sub 3}, and Na{sub 2}Ni{sub 2}(SeO{sub 3}){sub 3}

Three new sodium cobalt (nickel) selenite compounds, namely, Na{sub 2}Co{sub 2}(SeO{sub 3}){sub 3}, Na{sub 2}Co{sub 1.67}Ni{sub 0.33}(SeO{sub 3}){sub 3}, and Na{sub 2}Ni{sub 2}(SeO{sub 3}){sub 3} have been hydro-/solvothermally synthesized in the mixed solvents of acetonitrile and water. Single-crys...

Full description

Saved in:
Bibliographic Details
Published inJournal of solid state chemistry Vol. 183; no. 9
Main Authors Yuan Xiaoqing, Graduate School of the Chinese Academy of Sciences, Beijing 100049, Feng Meiling, Li Jianrong, Huang Xiaoying
Format Journal Article
LanguageEnglish
Published United States 15.09.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Three new sodium cobalt (nickel) selenite compounds, namely, Na{sub 2}Co{sub 2}(SeO{sub 3}){sub 3}, Na{sub 2}Co{sub 1.67}Ni{sub 0.33}(SeO{sub 3}){sub 3}, and Na{sub 2}Ni{sub 2}(SeO{sub 3}){sub 3} have been hydro-/solvothermally synthesized in the mixed solvents of acetonitrile and water. Single-crystal X-ray diffraction analyses reveal that these isostructural compounds belong to the orthorhombic Cmcm space group and their structures feature three-dimensional open frameworks constructed by the two-dimensional layers of [MSeO{sub 3}] pillared by the [SeO{sub 3}]{sup 2-} groups. The two different types of Na{sup +} ions reside in the intersecting two-dimensional channels parallel to the a- and c-axes, respectively. Their thermal properties have been investigated via TGA-DSC. The magnetic measurements indicate the existence of the antiferromagnetic interactions in these compounds. - Graphical abstract: Three new isostructural metal selenites, Na{sub 2}Co{sub 2}(SeO{sub 3}){sub 3}, Na{sub 2}Co{sub 1.67}Ni{sub 0.33}(SeO{sub 3}){sub 3}, and Na{sub 2}Ni{sub 2}(SeO{sub 3}){sub 3} have been hydro-/solvothermally synthesized and characterized. Their structures feature three-dimensional open frameworks with Na{sup +}-occupied channels.
ISSN:0022-4596
1095-726X
DOI:10.1016/j.jssc.2010.06.020