A method for determining optimal electric range by considering electric vehicle lightweighting on perceived ownership cost

The limited driving range due to high costs and low energy densities of batteries constraints the battery electric vehicle (BEV) market growth. Lightweighting in theory can reduce energy consumption rate and extend the driving range. The knowledge gap is to quantitatively link the cost-effectiveness...

Full description

Saved in:
Bibliographic Details
Published inJournal of cleaner production Vol. 385
Main Authors Ou, Shiqi, Zhang, Shengyong, Lin, Zhenhong, Davis, Stacy
Format Journal Article
LanguageEnglish
Published United States Elsevier 17.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The limited driving range due to high costs and low energy densities of batteries constraints the battery electric vehicle (BEV) market growth. Lightweighting in theory can reduce energy consumption rate and extend the driving range. The knowledge gap is to quantitatively link the cost-effectiveness of light-weight technologies with range extension and consumer acceptance of BEVs. In this study, a physics-based energy consumption model of BEVs is constructed and associated with a statistics-based model on the basis of travel surveys. A perceived cost of ownership (PCO) is then developed by adding intangible costs to traditional total cost of ownership models. We estimate, at the disaggregate vehicle model and driver level and the aggregate market level, 1) the extended range due to lightweighting for a given battery size; and 2) the optimal electric range based on lightweighting decisions. The cost-effectiveness of lightweighting for BEV range extension is found to vary with income-dependent daily range limitation value, driving patterns and lightweighting technology costs. In general, adopting lightweighting in BEVs is more cost-effective for consumers with higher daily limitation value, as well as for those with higher driving intensity or suitable daily driving patterns. When the lightweighting involves a higher vehicle production cost, less lightweighting could reduce the overall PCO for BEV owners. 4 of the selected top ten BEV models are found to benefit from additional 2.09%–4.45% lightweighting. Finally, the method built in this study can guide automakers in planning R&D investments in battery and lightweighting technologies.
Bibliography:USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office
AC05-00OR22725
ISSN:0959-6526
1879-1786