Flexural strength of a conventionally processed and additively manufactured debased 94% alumina

Mechanical strength of a 94 wt% debased alumina was measured using ASTM-C1161 specimens fabricated via conventional and lithography-based ceramic manufacturing (LCM) methods. The effects of build orientation and a 1500°C wet hydrogen fire added to the LCM firing sequence on strength were evaluated....

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied ceramic technology Vol. 19; no. 3
Main Authors Kammler, Daniel R., Cillessen, Dale E., Ford, Kurtis R., Larkin, Elizabeth C., Davidson, Will M., Christopher, James M., Gibson, Julie T.
Format Journal Article
LanguageEnglish
Published United States Wiley 23.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mechanical strength of a 94 wt% debased alumina was measured using ASTM-C1161 specimens fabricated via conventional and lithography-based ceramic manufacturing (LCM) methods. The effects of build orientation and a 1500°C wet hydrogen fire added to the LCM firing sequence on strength were evaluated. Additionally, a Weibull fit to the conventional flexural specimen data yielded 20 and 356 MPa for the modulus and characteristic strength, respectively. Weibull fits of the data from the LCM specimens yielded moduli between 7.5 and 11.3 and characteristics strengths between 333 and 339 MPa. A Weibull fit to data from LCM specimens subjected to the wet hydrogen fire yielded 14.2 and 376 MPa for the modulus and characteristic strength, respectively. The 95% confidence intervals for all Weibull parameters are reported. Average Archimedes bulk densities of LCM and conventional specimens were 3.732 and 3.730 g/cm3, respectively. Process dependent differences in surface morphology were observed in scanning electron microscope (SEM) images of specimen surfaces. SEM images of LCM specimen cross-sections showed alumina grain texture dependent on build direction, but no evidence of porosity concentrated in planes between printed layers. Fracture surfaces of LCM and conventionally processed specimens revealed hackle lines and mirror regions indicative of fracture initiation at the sample surface rather than the interior.
Bibliography:NA0003525
SAND-2021-15118J
USDOE National Nuclear Security Administration (NNSA)
ISSN:1546-542X
1744-7402