ProbabilisticRecalibration of Forecasts

In this work, we present a scheme by which a probabilistic forecasting system whose predictions have a poor probabilistic calibration may be recalibrated through the incorporation of past performance information in order to produce a new forecasting system that is demonstrably superior to the origin...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of forecasting Vol. 37; no. 1
Main Authors Graziani, Carlo, Rosner, Robert, Adams, Jennifer M., Machete, Reason L.
Format Journal Article
LanguageEnglish
Published United States Elsevier 10.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, we present a scheme by which a probabilistic forecasting system whose predictions have a poor probabilistic calibration may be recalibrated through the incorporation of past performance information in order to produce a new forecasting system that is demonstrably superior to the original, inasmuch as one may use it to win wagers consistently against someone who is using the original system. The scheme utilizes Gaussian process (GP) modeling to estimate a probability distribution over the probability integral transform (PIT) of a scalar predictand. The GP density estimate gives closed-form access to information entropy measures that are associated with the estimated distribution, which allows the prediction of winnings in wagers against the base forecasting system. A separate consequence of the procedure is that the recalibrated forecast has a uniform expected PIT distribution. One distinguishing feature of the procedure is that it is appropriate even if the PIT values are not i.i.d. The recalibration scheme is formulated in a framework that exploits the deep connections among information theory, forecasting, and betting. We demonstrate the effectiveness of the scheme in two case studies: a laboratory experiment with a nonlinear circuit and seasonal forecasts of the intensity of the El Nino-Southern Oscillation phenomenon.
Bibliography:National Aeronautics and Space Administration (NASA)
National Oceanic and Atmospheric Administration (NOAA)
AC02-06CH11357
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
National Science Foundation (NSF)
ISSN:0169-2070
1872-8200