Orientation Relationships of Pure Tin on Single Crystal Germanium Substrates

The limited number of independent β-Sn grain orientations resulting from the difficulty in nucleating β-Sn during solidification of Sn-based solders has a large effect on the resulting β-Sn grain size and, hence, on overall solder joint performance and reliability. This study analyzes the efficacy o...

Full description

Saved in:
Bibliographic Details
Published inJournal of electronic materials Vol. 49; no. 1
Main Authors Reeve, Thomas C., Reeve, Samuel Temple, Handwerker, Carol A.
Format Journal Article
LanguageEnglish
Published United States Springer 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The limited number of independent β-Sn grain orientations resulting from the difficulty in nucleating β-Sn during solidification of Sn-based solders has a large effect on the resulting β-Sn grain size and, hence, on overall solder joint performance and reliability. This study analyzes the efficacy of Ge as a heterogeneous nucleation agent for β-Sn by observing the morphologies and orientation relationships of as-deposited, solid-state annealed, and liquid-state annealed pure Sn films on single crystal Ge (100), (110), and (111) substrates. Here, the results from scanning electron microscopy and electron backscatter diffraction showed that the as-deposited Sn films all deposited with a Sn (001)|| z-axis texture, regardless of the underlying Ge substrate orientation. Solid-state annealing at 150 °C for 5 min did not result in significant dewetting of the Sn films, and the films maintained their as-deposited texture of Sn (001)|| z-axis, regardless of the underlying Ge substrate orientation. Liquid-state annealing at 235 °C for 1 min resulted is large-scale dewetting of the Sn films and re-orientation of the Sn films on the various Ge substrates. After solidification, the Ge (100) and (110) single crystal substrates produced patches of dewetted grains of the same orientation but there were no consistent Sn grain textures after liquid-state annealing, suggesting no single orientation relationship. In contrast, solidification on Ge (111) single crystal substrates resulted in isolated grains with a single Sn film texture and an orientation relationship of (100)Sn∥(111)Ge and [100]Sn∥[110]Ge. Density Functional Theory simulations of the experimentally observed Ge (111) sample orientation relationship and the Ge/Sn cube-on-cube orientation relationship suggest favorable relative interfacial binding energies for both interface orientations.
Bibliography:AC52-07NA27344
LLNL-JRNL-774079
USDOE National Nuclear Security Administration (NNSA)
ISSN:0361-5235
1543-186X