GROUND STATES OF A COVARIANT SEMIGROUP C-ALGEBRA
Let $ \mathrm{P}\rtimes\Bbb N^{\times}$ be a semidirect product of an additive semigroup$ \mathrm{P} = \{ 0, 2, 3, \cdots \} $by a multiplicative positive natural numbers semigroup $ \Bbb N^{\times}$. We consider a covariant semigroup $C^{*}$-algebra $ {\mathcal{T}}(\mathrm{P} \rtimes \mathbb{N}^{\t...
Saved in:
Published in | 충청수학회지, 33(3) pp. 339 - 349 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
충청수학회
01.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Let $ \mathrm{P}\rtimes\Bbb N^{\times}$ be a semidirect product of an additive semigroup$ \mathrm{P} = \{ 0, 2, 3, \cdots \} $by a multiplicative positive natural numbers semigroup $ \Bbb N^{\times}$.
We consider a covariant semigroup $C^{*}$-algebra $ {\mathcal{T}}(\mathrm{P} \rtimes \mathbb{N}^{\times})$ of the semigroup $ \mathrm{P}\rtimes\Bbb N^{\times}$.
We obtain the condition that a state on $ {\mathcal{T}}(\mathrm{P} \rtimes \mathbb{N}^{\times})$ can be a ground state ofthe natural $C^*$-dynamical system $( \mathcal{T} ( \mathrm{P}\rtimes\Bbb N^{\times}), \Bbb R, \sigma )$. KCI Citation Count: 0 |
---|---|
ISSN: | 1226-3524 2383-6245 |
DOI: | 10.14403/jcms.2020.33.3.339 |