On the minus parts of classical Poincar\'e series

Let $S_k(N)$ be the space of cusp forms of weight $k$ for $\Gamma_0(N)$. We show that $S_k(N)$ is the direct sum of subspaces $S_k^+(N)$ and $S_k^-(N)$. Where $S_k^+(N)$ is the vector space of cusp forms of weight $k$ for the group $\Gamma_0^+(N)$ generated by $\Gamma_0(N)$ and $W_N$ and $S_k^-(N)$...

Full description

Saved in:
Bibliographic Details
Published in충청수학회지, 31(3) pp. 281 - 285
Main Author 최소영
Format Journal Article
LanguageEnglish
Published 충청수학회 01.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Let $S_k(N)$ be the space of cusp forms of weight $k$ for $\Gamma_0(N)$. We show that $S_k(N)$ is the direct sum of subspaces $S_k^+(N)$ and $S_k^-(N)$. Where $S_k^+(N)$ is the vector space of cusp forms of weight $k$ for the group $\Gamma_0^+(N)$ generated by $\Gamma_0(N)$ and $W_N$ and $S_k^-(N)$ is the subspace consisting of elements $f$ in $S_k(N)$ satisfying $f|_kW_N=-f$. We find generators spanning the space $S_k^-(N)$ from Poincar\'e series and give all linear relations among such generators. KCI Citation Count: 0
ISSN:1226-3524
2383-6245
DOI:10.14403/jcms.2018.31.1.281