Computational Thinking in Mathematics

With the spread of COVID-19, the environment of one PC/tablet per student is about to be realized earlier than the roadmap at the time of the launch of the GIGA school concept(GIGA: Global and Innovation Gateway for All). However, in the mathematics department of the new Courses of Study for mathema...

Full description

Saved in:
Bibliographic Details
Published inComputer & Education Vol. 51; pp. 39 - 45
Main Authors Yoshida Kenji, Shinoda Yuji, Matsumoto Shigeki
Format Journal Article
LanguageJapanese
Published 一般社団法人 CIEC 01.12.2021
CIEC
Subjects
Online AccessGet full text
ISSN2186-2168
2188-6962
DOI10.14949/konpyutariyoukyouiku.51.39

Cover

Loading…
More Information
Summary:With the spread of COVID-19, the environment of one PC/tablet per student is about to be realized earlier than the roadmap at the time of the launch of the GIGA school concept(GIGA: Global and Innovation Gateway for All). However, in the mathematics department of the new Courses of Study for mathematics announced in 2009, there is no description of programming-oriented thinking, and only mentions the appropriate use of PCs. Therefore, this paper considers computational thinking(CT)as the core of programming-oriented thinking, and discuss CT hidden in solution methods mainly in junior high school mathematics. Using mathematics teaching materials as an example, reinterpreting the solutions given in textbooks, etc. from the perspective of CT will connect to the subject to programming of “Technology and Home Economics” in middle school and “Information” in high school. Furthermore, teaching methods that make mathematics the foundation for CT will be considered.  COVID-19の流行によりひとり1台のPC / タブレットの環境が,GIGAスクール構想(GIGA:Global and Innovation Gateway for All)を立ち上げた時期のロードマップより早く実現しようとしている。しかしながら,平成29年に告示された新学習指導要領の数学科においては,プログラミング的思考に関する記述はなく,適切なPCの活用に留まっている。そこで,本稿ではプログラミング的思考のコアとなる思考をComputational Thinking(CT)と捉え,中学数学を中心とした解法の中に潜むCTについて述べる。数学の教材を例に,教科書などで示されている解答をCTの視点で解釈し直すことで,中学校の技術や高校の情報のプログラミングに繋がると考えられる。さらに,数学をCTの基盤となるような指導法について考える。
ISSN:2186-2168
2188-6962
DOI:10.14949/konpyutariyoukyouiku.51.39