Face Detection Using Shapes and Colors in Various Backgrounds

In this paper, we propose a method for detecting characters in images and detecting facial regions, which consists of two tasks. First, we separate two different characters to detect the face position of the characters in the frame. For fast detection, we use You Only Look Once (YOLO), which finds f...

Full description

Saved in:
Bibliographic Details
Published in韓國컴퓨터情報學會論文誌 Vol. 26; no. 7; pp. 19 - 27
Main Authors Lee, Chang-Hyun, Lee, Hyun-Ji, Lee, Seung-Hyun, Oh, Joon-Taek, Park, Seung-Bo
Format Journal Article
LanguageKorean
Published 2021
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we propose a method for detecting characters in images and detecting facial regions, which consists of two tasks. First, we separate two different characters to detect the face position of the characters in the frame. For fast detection, we use You Only Look Once (YOLO), which finds faces in the image in real time, to extract the location of the face and mark them as object detection boxes. Second, we present three image processing methods to detect accurate face area based on object detection boxes. Each method uses HSV values extracted from the region estimated by the detection figure to detect the face region of the characters, and changes the size and shape of the detection figure to compare the accuracy of each method. Each face detection method is compared and analyzed with comparative data and image processing data for reliability verification. As a result, we achieved the highest accuracy of 87% when using the split rectangular method among circular, rectangular, and split rectangular methods. 본 논문에서는 영상 속 인물을 탐지하고 얼굴 영역을 검출하는 방법을 제안하며, 이 방법은 2가지 작업으로 구성한다. 첫째, 서로 다른 두 명의 인물을 구분하여 프레임 내 인물의 얼굴 위치를 탐지한다. 빠른 탐지를 위해 영상 내 물체를 실시간으로 검출하는 YOLO(You Only Look Once)를 이용하여 얼굴의 위치를 탐지하고 객체탐지상자로 나타낸다. 둘째, 객체탐지상자를 바탕으로 정확한 얼굴 면적을 검출하기 위해 3가지 영상처리 방법을 제시한다. 각 방법은 검출 도형으로 추정한 영역에서 추출한 HSV 값을 이용하여 인물의 얼굴 영역을 검출하였으며 검출 도형의 크기와 모양을 바꾸어 각 방법의 정확도를 비교하였다. 각 얼굴 검출 방법은 신뢰성 검증을 위해 비교 데이터와 영상처리 데이터로 비교 및 분석하였다. 그 결과 원형, 직사각형, 분할 직사각형 방법 중 분할된 직사각형 방법을 사용했을 때 87%로 가장 높은 정확도를 달성하였다.
Bibliography:KISTI1.1003/JNL.JAKO202123157311855
ISSN:1598-849X
2383-9945