Polymer Hydrogels Formulated with Various Cross-Linkers for Food-Surface Application to Control Listeria monocytogenes

This study investigated the physical properties of polymers and antimicrobial activities of organic acids on Listeria monocytogenes to develop hydrogels. ${\kappa}-carrageenan$ (1, 2, and 3%), carboxymethylcellulose (CMC; 1, 3, and 5%), and agar (1.5 and 3%) were mixed with cross-linkers ($Na^+$, $K...

Full description

Saved in:
Bibliographic Details
Published inHan'gug sigpum wi'saeng anjeonseong haghoeji Vol. 32; no. 5; pp. 443 - 446
Main Authors Kim, Sejeong, Oh, Hyemin, Lee, Heeyoung, Lee, Soomin, Ha, Jimyeong, Lee, Jeeyeon, Choi, Yukyoung, Yoon, Yohan
Format Journal Article
LanguageKorean
Published 2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study investigated the physical properties of polymers and antimicrobial activities of organic acids on Listeria monocytogenes to develop hydrogels. ${\kappa}-carrageenan$ (1, 2, and 3%), carboxymethylcellulose (CMC; 1, 3, and 5%), and agar (1.5 and 3%) were mixed with cross-linkers ($Na^+$, $K^+$, $Ca^{2+}$, and $Al^{3+}$) or each other by stirring or heating to form cross-linkage, and their physical properties (hardness, elasticity, and swelling) were measured. The hydrogels formulated with organic acid (1, 3, and 5%) were analyzed by spot assay against L. monocytogenes. ${\kappa}-carrageenan$ formed hydrogels with high hardness without other cross-linkers, but they had low elasticity. The elasticity was improved by mixing with other cross-linkers such as $K^+$ or other polymer, especially in 3% ${\kappa}-carrageenan$. CMC hydrogel was formed by adding cross-linkers $Al^{3+}$, $Na^+$, or $Ca^{2+}$, especially in 5% CMC. Thus, stickiness and swelling for selected hydrogel formulations (two of ${\kappa}-carrageenan$ hydrogels and three of CMC hydrogels) were measured. Among the selected hydrogels, most of them showed appropriate hardness, but only 3% ${\kappa}-carrageenan-contained$ hydrogels maintained their shapes from swelling. Hence, 3% ${\kappa}-carrageenan+0.2%$ KCl and 3% ${\kappa}-carrageenan+1%$ alginate+0.2% KCl+0.2% $CaCl_2$ were selected to be formulated with lactic acid, and showed antilisterial activity. These results indicate that 3% ${\kappa}-carrageenan$ hydrogels formulated with lactic acid can be used to control L. monocytogenes on food surface.
Bibliography:KISTI1.1003/JNL.JAKO201732060821086
ISSN:1229-1153
2465-9223