Biocompatibility study of lithium disilicate and zirconium oxide ceramics for esthetic dental abutments
Purpose: The increasing demand for esthetically pleasing results has contributed to the use of ceramics for dental implant abutments. The aim of this study was to compare the biological response of epithelial tissue cultivated on lithium disilicate ($LS_2$) and zirconium oxide ($ZrO_2$) ceramics. Un...
Saved in:
Published in | Journal of periodontal & implant science Vol. 46; no. 6; pp. 362 - 371 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | Korean |
Published |
2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Purpose: The increasing demand for esthetically pleasing results has contributed to the use of ceramics for dental implant abutments. The aim of this study was to compare the biological response of epithelial tissue cultivated on lithium disilicate ($LS_2$) and zirconium oxide ($ZrO_2$) ceramics. Understanding the relevant physicochemical and mechanical properties of these ceramics will help identify the optimal material for facilitating gingival wound closure. Methods: Both biomaterials were prepared with 2 different surface treatments: raw and polished. Their physicochemical characteristics were analyzed by contact angle measurements, scanning white-light interferometry, and scanning electron microscopy. An organotypic culture was then performed using a chicken epithelium model to simulate peri-implant soft tissue. We measured the contact angle, hydrophobicity, and roughness of the materials as well as the tissue behavior at their surfaces (cell migration and cell adhesion). Results: The best cell migration was observed on $ZrO_2$ ceramic. Cell adhesion was also drastically lower on the polished $ZrO_2$ ceramic than on both the raw and polished $LS_2$. Evaluating various surface topographies of $LS_2$ showed that increasing surface roughness improved cell adhesion, leading to an increase of up to 13%. Conclusions: Our results demonstrate that a biomaterial, here $LS_2$, can be modified using simple surface changes in order to finely modulate soft tissue adhesion. Strong adhesion at the abutment associated with weak migration assists in gingival wound healing. On the same material, polishing can reduce cell adhesion without drastically modifying cell migration. A comparison of $LS_2$ and $ZrO_2$ ceramic showed that $LS_2$ was more conducive to creating varying tissue reactions. Our results can help dental surgeons to choose, especially for esthetic implant abutments, the most appropriate biomaterial as well as the most appropriate surface treatment to use in accordance with specific clinical dental applications. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO201617447409915 |
ISSN: | 2093-2278 2093-2286 |