Study on the biodegradation of perfluorooctanesulfonate (PFOS) and PFOS alternatives
Objectives In this study, we investigated the biodegradation features of 4 perfluorooctanesulfonate (PFOS) alternatives developed at Changwon National University compared to those of PFOS. Methods Biodegradation testing was performed with microorganisms cultured in the good laboratory practice labor...
Saved in:
Published in | Environmental health and toxicology Vol. 31; no. 31; pp. 2.1 - 2.4 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | Korean |
Published |
2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Objectives In this study, we investigated the biodegradation features of 4 perfluorooctanesulfonate (PFOS) alternatives developed at Changwon National University compared to those of PFOS. Methods Biodegradation testing was performed with microorganisms cultured in the good laboratory practice laboratory of the Korea Environment Corporation for 28 days following the Organization for Economic Cooperation and Development guidelines for the testing of chemicals (Test No. 301 C). Results While $C_8F_{17}SO_3Na$, PFOS sodium salt was not degraded after 28 days, the 4 alternatives were biodegraded at the rates of 20.9% for $C_{15}F_9H_{21}S_2O_8Na_2$, 8.4% for $C_{17}F_9H_{25}S_2O_8Na_2$, 22.6% for $C_{23}F_{18}H_{28}S_2O_8Na_2$, and 23.6% for $C_{25}F_{17}H_{32}O_{13}S_3Na_3$. Conclusions $C_{25}F_{17}H_{32}S_3O_{13}Na_3$, $C_{23}F_{18}H_{28}S_2O_8Na_2$, and $C_{15}F_9H_{21}S_2O_8Na_2$ were superior to PFOS in terms of biodegradation rates and surface tension, and thus they were considered highly applicable as PFOS alternatives. Environmental toxicity, human toxicity, and economic feasibility of these compounds should be investigated prior to their commercialization. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO201616356793905 |
ISSN: | 2233-6567 |