날씨·조명 판단 및 적응적 색상모델을 이용한 도로주행 영상에서의 이정표 검출

Road-view object classification methods are mostly influenced by weather and illumination conditions, thus the most of the research activities are based on dataset in clean weathers. In this paper, we present a road-view object classification method based on color segmentation that works for all kin...

Full description

Saved in:
Bibliographic Details
Published in정보처리학회논문지. KIPS transactions on software and data engineering. 소프트웨어 및 데이터 공학 Vol. 4; no. 11; pp. 521 - 528
Main Authors 김태형, 임광용, 변혜란, 최영우, Kim, Tae Hung, Lim, Kwang Yong, Byun, Hye Ran, Choi, Yeong Woo
Format Journal Article
LanguageKorean
Published 2015
Online AccessGet full text

Cover

Loading…
More Information
Summary:Road-view object classification methods are mostly influenced by weather and illumination conditions, thus the most of the research activities are based on dataset in clean weathers. In this paper, we present a road-view object classification method based on color segmentation that works for all kinds of weathers. The proposed method first classifies the weather and illumination conditions and then applies the weather-specified color models to find the road traffic signs. Using 5 different features of the road-view images, we classify the weather and light conditions as sunny, cloudy, rainy, night, and backlight. Based on the classified weather and illuminations, our model selects the weather-specific color ranges to generate Gaussian Mixture Model for each colors, Green, Yellow, and Blue. The proposed method successfully detects the traffic signs regardless of the weather and illumination conditions. 도로주행 영상에서의 객체 검출에 관한 기존의 연구들은 날씨 및 조명 상태에 따른 객체 검출의 어려움 때문에 대부분 맑은 날씨의 영상을 대상으로 연구가 진행되었다. 본 논문에서는 도로주행 영상의 다양한 날씨 및 조명 상태를 먼저 판단하고, 이를 기반으로 도로 이정표에 대한 색상모델을 설정하여 이정표 객체를 찾는 방법을 제안한다. 제안한 방법은 5종류의 도로 이미지 특징을 이용하여 맑음, 흐림, 비, 야간, 역광으로 날씨 및 조명 상태를 먼저 분류하고, 각각의 상태에서 대상 이정표 색상의 픽셀값의 범위를 추출하여 GMM(Gaussian Mixture Model)을 생성하고 이를 객체 추출에 사용한다. 날씨 및 조명이 다양하게 변하는 도로주행 영상에 제안한 방법을 적용하여 이정표 영역이 안정적으로 찾아지는 것을 확인할 수 있었다.
Bibliography:KISTI1.1003/JNL.JAKO201535151757923
ISSN:2287-5905