레이블 멱집합 분류와 다중클래스 확률추정을 사용한 단백질 세포내 위치 예측

One of the important hints for inferring the function of unknown proteins is the knowledge about protein subcellular localization. Recently, there are considerable researches on the prediction of subcellular localization of proteins which simultaneously exist at multiple subcellular localization. In...

Full description

Saved in:
Bibliographic Details
Published in한국정보통신학회논문지 Vol. 18; no. 10; pp. 2562 - 2570
Main Authors 지상문, Chi, Sang-Mun
Format Journal Article
LanguageKorean
Published 2014
Online AccessGet full text

Cover

Loading…
More Information
Summary:One of the important hints for inferring the function of unknown proteins is the knowledge about protein subcellular localization. Recently, there are considerable researches on the prediction of subcellular localization of proteins which simultaneously exist at multiple subcellular localization. In this paper, label power-set classification is improved for the accurate prediction of multiple subcellular localization. The predicted multi-labels from the label power-set classifier are combined with their prediction probability to give the final result. To find the accurate probability estimates of multi-classes, this paper employs pair-wise comparison and error-correcting output codes frameworks. Prediction experiments on protein subcellular localization show significant performance improvement. 단백질의 기능을 유추할 수 있는 중요한 정보중의 하나는 단백질이 존재하는 세포내 위치이다. 최근에는 하나의 단백질이 동시에 존재하는 여러 세포내 위치를 예측하는 연구가 활발하다. 본 논문에서는 단백질이 존재하는 세포내의 다중위치를 예측하기 위해서 레이블 멱집합 방법을 개선한다. 레이블 멱집합 방법으로 분류한 다중위치들을 예측 확률에 따라 결합하여 최종적인 다중레이블로 분류한다. 각 다중위치에 대한 정확한 확률적 기여를 구하기 위하여 쌍별 비교와 오류정정 출력코드를 사용한 다중클래스 확률추정 방법을 적용하였다. 단백질 세포내 위치 예측 실험에 제안한 방법을 적용하여 성능이 향상됨을 보였다.
Bibliography:KISTI1.1003/JNL.JAKO201432441779401
ISSN:2234-4772