Edge-Maximal 𝜃 k+1 -Edge Disjoint Free Graphs
For two positive integers r and s, $\mathcal{G}$(n; r; ${\theta}_s$) denotes to the class of graphs on n vertices containing no r of edge disjoint ${\theta}_s$-graphs and f(n; r; ${\theta}_s$) = max{${\varepsilon}(G)$ : G ${\in}$ $\mathcal{G}$(n; r; ${\theta}_s$)}. In this paper, for integers r, $k{...
Saved in:
Published in | Kyungpook mathematical journal Vol. 54; no. 1; pp. 23 - 30 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Korean |
Published |
2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | For two positive integers r and s, $\mathcal{G}$(n; r; ${\theta}_s$) denotes to the class of graphs on n vertices containing no r of edge disjoint ${\theta}_s$-graphs and f(n; r; ${\theta}_s$) = max{${\varepsilon}(G)$ : G ${\in}$ $\mathcal{G}$(n; r; ${\theta}_s$)}. In this paper, for integers r, $k{\geq}2$, we determine f(n; r; ${\theta}_{2k+1}$) and characterize the edge maximal members in G(n; r; ${\theta}_{2k+1}$). |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO201415641084540 |
ISSN: | 1225-6951 0454-8124 |