Edge-Maximal 𝜃 k+1 -Edge Disjoint Free Graphs

For two positive integers r and s, $\mathcal{G}$(n; r; ${\theta}_s$) denotes to the class of graphs on n vertices containing no r of edge disjoint ${\theta}_s$-graphs and f(n; r; ${\theta}_s$) = max{${\varepsilon}(G)$ : G ${\in}$ $\mathcal{G}$(n; r; ${\theta}_s$)}. In this paper, for integers r, $k{...

Full description

Saved in:
Bibliographic Details
Published inKyungpook mathematical journal Vol. 54; no. 1; pp. 23 - 30
Main Authors Jaradat, Mohammed M.M, Bataineh, Mohammed S.A
Format Journal Article
LanguageKorean
Published 2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For two positive integers r and s, $\mathcal{G}$(n; r; ${\theta}_s$) denotes to the class of graphs on n vertices containing no r of edge disjoint ${\theta}_s$-graphs and f(n; r; ${\theta}_s$) = max{${\varepsilon}(G)$ : G ${\in}$ $\mathcal{G}$(n; r; ${\theta}_s$)}. In this paper, for integers r, $k{\geq}2$, we determine f(n; r; ${\theta}_{2k+1}$) and characterize the edge maximal members in G(n; r; ${\theta}_{2k+1}$).
Bibliography:KISTI1.1003/JNL.JAKO201415641084540
ISSN:1225-6951
0454-8124