A Role of Cell Adhesion Molecules and Gelatinases in Human Serum-Induced Aggregation of Human Eyelid-Derived Stem Cells In Vitro
Human serum (HS) has been reported to induce aggregation of human eyelid adipose-derived stem cells (HEACs) during high-density culture in vitro. The present study focused on the role of cell adhesion molecules and gelatinases during HS-induced aggregation of HEACs. HS-induced aggregation occurred b...
Saved in:
Published in | Balsaeng'gwa saengsig Vol. 17; no. 4; pp. 409 - 420 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Korean |
Published |
2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Human serum (HS) has been reported to induce aggregation of human eyelid adipose-derived stem cells (HEACs) during high-density culture in vitro. The present study focused on the role of cell adhesion molecules and gelatinases during HS-induced aggregation of HEACs. HS-induced aggregation occurred between 9-15 days of culture. Cells aggregated by HS medium (HS-agg) showed stronger expression of ${\alpha}2$, ${\alpha}2B$, ${\alpha}X$, and CEACAM1 genes compared to non-aggregated cells in HS medium (HS-ex) or in control FBS-cultured cells. HS-agg were distinctly labeled with antibodies against ${\alpha}2$, ${\alpha}2B$, and ${\alpha}X$ proteins. Western blot results demonstrated that the two integrin proteins were greatly expressed in HS-agg compared to HS-ex and control FBS-cultured cells. Treatment of HEACs with anti-integrin ${\alpha}2$ antibody during culture in HS medium delayed aggregation formation. HS-agg exhibited strong expression of MMP1 and MMP9 compared to HS-ex or FBS-cultured cells. Conditioned media from HS-culture showed remarkable increase of MMP9 gelatinolytic activity in comparison to those from FBS-culture. However, there was no change of TIMP mRNA expression in relation to the HS-induced aggregation. Based on these results, it is suggested that integrin ${\alpha}2$, ${\alpha}2B$, and ${\alpha}X$, and MMP9 might play an important role in the HS-induced aggregation of HEACs. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO201305981458168 |
ISSN: | 2465-9525 2465-9541 |