Repeated Administration of Korea Red Ginseng Extract Increases Non-Rapid Eye Movement Sleep via GABA A ergic Systems

The current inquiry was conducted to assess the change in sleep architecture after long periods of administration to determine whether ginseng can be used in the therapy of sleeplessness. Following post-surgical recovery, red ginseng extract (RGE, 200 mg/kg) was orally administrated to rats for 9 d....

Full description

Saved in:
Bibliographic Details
Published inJournal of ginseng research Vol. 36; no. 4; pp. 403 - 410
Main Authors Lee, Chung-Il, Kim, Chung-Soo, Han, Jin-Yi, Oh, Eun-Hye, Oh, Ki-Wan, Eun, Jae-Soon
Format Journal Article
LanguageKorean
Published 2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The current inquiry was conducted to assess the change in sleep architecture after long periods of administration to determine whether ginseng can be used in the therapy of sleeplessness. Following post-surgical recovery, red ginseng extract (RGE, 200 mg/kg) was orally administrated to rats for 9 d. Data were gathered on the 1st, 5th, and 9th day, and an electroencephalogram was recorded 24 h after RGE administration. Polygraphic signs of unobstructed sleep-wake activities were simultaneously recorded with sleep-wake recording electrodes from 11:00 a.m. to 5:00 p.m. for 6 h. Rodents were generally tamed to freely moving polygraphic recording conditions. Although the 1st and 5th day of RGE treatment showed no effect on power densities in nonrapid eye movement (NREM) and rapid eye movement (REM) sleep, the 9th day of RGE administration showed augmented ${\alpha}$-wave (8.0 to 13.0 Hz) power densities in NREM and REM sleep. RGE increased total sleep and NREM sleep. The total percentage of wakefulness was only decreased on the 9th day, and the number of sleep-wake cycles was reduced after the repeated administration of RGE. Thus, the repeated administration of RGE increased NREM sleep in rats. The ${\alpha}$-wave activities in the cortical electroencephalograms were increased in sleep architecture by RGE. Moreover, the levels of both ${\alpha}$- and ${\beta}$-subunits of the ${\gamma}$-aminobutyric acid $(GABA)_A$ receptor were reduced in the hypothalamus of the RGE-treated groups. The level of glutamic acid decarboxylase was over-expressed in the hypothalamus. These results demonstrate that RGE increases NREM sleep via $GABA_A$ergic systems.
Bibliography:KISTI1.1003/JNL.JAKO201229664766681
ISSN:1226-8453
2093-4947