An Algorithm for Quartically Hyponormal Weighted Shifts

Examples of a quartically hyponormal weighted shift which is not 3-hyponormal are discussed in this note. In [7] Exner-Jung-Park proved that if ${\alpha}$(x) : $\sqrt{x},\sqrt{\frac{2}{3}},\sqrt{\frac{3}{4}},\sqrt{\frac{4}{5}},{\cdots}$ with 0 < x ${\leq}\;\frac{53252}{100000}$, then $W_{\alpha(x...

Full description

Saved in:
Bibliographic Details
Published inKyungpook mathematical journal Vol. 51; no. 2; pp. 187 - 194
Main Authors Baek, Seung-Hwan, Jung, Il-Bong, Moo, Gyung-Young
Format Journal Article
LanguageKorean
Published 2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Examples of a quartically hyponormal weighted shift which is not 3-hyponormal are discussed in this note. In [7] Exner-Jung-Park proved that if ${\alpha}$(x) : $\sqrt{x},\sqrt{\frac{2}{3}},\sqrt{\frac{3}{4}},\sqrt{\frac{4}{5}},{\cdots}$ with 0 < x ${\leq}\;\frac{53252}{100000}$, then $W_{\alpha(x)}$ is quartically hyponormal but not 4-hyponormal. And, Curto-Lee([5]) improved their result such as that if ${\alpha}(x)$ : $\sqrt{x},\sqrt{\frac{2}{3}},\sqrt{\frac{3}{4}},\sqrt{\frac{4}{5}},{\cdots}$ with 0 < x ${\leq}\;\frac{667}{990}$, then $W_{\alpha(x)}$ is quartically hyponormal but not 3-hyponormal. In this note, we improve slightly Curto-Lee's extremal value by using an algorithm and computer software tool.
Bibliography:KISTI1.1003/JNL.JAKO201123163432899
ISSN:1225-6951
0454-8124