Kinetic and Theoretical Studies on Pyridinolysis of 2,4-Dinitrophenyl X-Substituted Benzoates: Effect of Substituent X on Reactivity and Mechanism
Second-order rate constants ($k_N$) have been measured spectrophotometrically for reactions of 2,4-dinitrophenyl X-substituted benzoates (X = 4-MeO, H and 4-$NO_2$) with a series of Z-substituted pyridines in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The Br${\o}$nsted-type plots exhi...
Saved in:
Published in | Bulletin of the Korean Chemical Society Vol. 31; no. 9; pp. 2593 - 2597 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Korean |
Published |
2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Second-order rate constants ($k_N$) have been measured spectrophotometrically for reactions of 2,4-dinitrophenyl X-substituted benzoates (X = 4-MeO, H and 4-$NO_2$) with a series of Z-substituted pyridines in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The Br${\o}$nsted-type plots exhibit downward curvature (e.g., $\beta_2$ = 0.89 ~ 0.96 when $pK_a$ < 9.5 while $\beta_1$ = 0.38 ~ 0.46 when $pK_a$ > 9.5), indicating that the reaction proceeds through a stepwise mechanism with a change in rate-determining step (RDS). The ${pK_a}^o$, defined as the $pK_a$ at the center of Br${\o}$nsted curvature, has been analyzed to be 9.5 regardless of the electronic nature of the substituent X in the benzoyl moiety. Dissection of $k_N$ into the microscopic rate constants $k_1$ and $k_2/k_{-1}$ ratio has revealed that $k_1$ is governed by the electronic nature of the substituent X but the $k_2/k_{-1}$ ratio is not. Theoretical calculations also support the argument that the electronic nature of the substituent X in the benzoyl moiety does not influence the $k_2/k_{-1}$ ratio. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO201027838918280 |
ISSN: | 0253-2964 1229-5949 |