Metal Ion Catalysis in Nucleophilic Substitution Reaction of 4-Nitrophenyl Picolinate with Alkali Metal Ethoxides in Anhydrous Ethanol

Pseudo-first-order rate constants ($k_{obsd}$) were measured spectrophotometrically for nucleophilic substitution reactions of 4-nitrophenyl picolinate (6) with alkali metal ethoxides (EtOM, $M^+\;=\;K^+$, $Na^+$ and $Li^+$) in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. The plot of $k_{obsd}$ vs....

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Korean Chemical Society Vol. 31; no. 9; pp. 2483 - 2487
Main Authors Hong, Yeon-Ju, Kim, Song-I, Um, Ik-Hwan
Format Journal Article
LanguageKorean
Published 2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pseudo-first-order rate constants ($k_{obsd}$) were measured spectrophotometrically for nucleophilic substitution reactions of 4-nitrophenyl picolinate (6) with alkali metal ethoxides (EtOM, $M^+\;=\;K^+$, $Na^+$ and $Li^+$) in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. The plot of $k_{obsd}$ vs. [EtOM] exhibits upward curvature regardless of the nature of $M^+$ ions. However, the plot for the reaction of 6 with EtOK is linear with significantly decreased $k_{obsd}$ values when 18-crown-6-ether (18C6, a complexing agent for $K^+$ ion) is added in the reaction medium. Dissection of $k_{obsd}$ into $k_{EtO^-}$ and $k_{EtOM}$ (i.e., the second-order rate constant for the reaction with dissociated $EtO^-$ and ion-paired EtOM, respectively) has revealed that ion-paired EtOM is 3~17 times more reactive than dissociated $EtO^-$. The reaction has been proposed to proceed through a 5-membered cyclic transition state, in which $M^+$ ion increases the electrophilicity of the reaction site. Interestingly, $Na^+$ ion exhibits the largest catalytic effect. The presence of a nitrogen atom in the pyridine moiety of 6 has been suggested to be responsible for the high $Na^+$ ion selectivity.
Bibliography:KISTI1.1003/JNL.JAKO201027838918242
ISSN:0253-2964
1229-5949