GENERALIZED INTEGRATION OPERATORS BETWEEN BLOCH-TYPE SPACES ANDF(p, q, s) SPACES

LetH(𝔻) denote the space of all holomorphic functions on the unit disk 𝔻 of ℂ. Letφbe a holomorphic self-map of 𝔻,nbe a positive integer andg∈H(𝔻). In this paper, we investigate the boundedness and compactness of a generalized integration operator I g , φ ( n ) f ( z ) = ∫ 0 z f ( n ) ( φ ( ζ ) ) g...

Full description

Saved in:
Bibliographic Details
Published inTaiwanese journal of mathematics Vol. 17; no. 4; pp. 1211 - 1225
Main Authors He, Zhong Hua, Cao, Guangfu
Format Journal Article
LanguageEnglish
Published Mathematical Society of the Republic of China 01.08.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:LetH(𝔻) denote the space of all holomorphic functions on the unit disk 𝔻 of ℂ. Letφbe a holomorphic self-map of 𝔻,nbe a positive integer andg∈H(𝔻). In this paper, we investigate the boundedness and compactness of a generalized integration operator I g , φ ( n ) f ( z ) = ∫ 0 z f ( n ) ( φ ( ζ ) ) g ( ζ ) d ζ ,   z ∈ D , between Bloch-type spaces andF(p, q, s) spaces. 2010Mathematics Subject Classification: 47G10, 30H05. Key words and phrases: Generalized integration operator, Bloch-type space,F(p, q, s) space.
ISSN:1027-5487
2224-6851