GENERALIZED INTEGRATION OPERATORS BETWEEN BLOCH-TYPE SPACES ANDF(p, q, s) SPACES
LetH(𝔻) denote the space of all holomorphic functions on the unit disk 𝔻 of ℂ. Letφbe a holomorphic self-map of 𝔻,nbe a positive integer andg∈H(𝔻). In this paper, we investigate the boundedness and compactness of a generalized integration operator I g , φ ( n ) f ( z ) = ∫ 0 z f ( n ) ( φ ( ζ ) ) g...
Saved in:
Published in | Taiwanese journal of mathematics Vol. 17; no. 4; pp. 1211 - 1225 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Mathematical Society of the Republic of China
01.08.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | LetH(𝔻) denote the space of all holomorphic functions on the unit disk 𝔻 of ℂ. Letφbe a holomorphic self-map of 𝔻,nbe a positive integer andg∈H(𝔻). In this paper, we investigate the boundedness and compactness of a generalized integration operator
I
g
,
φ
(
n
)
f
(
z
)
=
∫
0
z
f
(
n
)
(
φ
(
ζ
)
)
g
(
ζ
)
d
ζ
,
z
∈
D
,
between Bloch-type spaces andF(p, q, s) spaces.
2010Mathematics Subject Classification: 47G10, 30H05.
Key words and phrases: Generalized integration operator, Bloch-type space,F(p, q, s) space. |
---|---|
ISSN: | 1027-5487 2224-6851 |