Investigation of the Trap States and V} Instability in LPCVD Si3N4/AlGaN/GaN MIS-HEMTs with an In-Situ Si3N4 Interfacial Layer

A novel gate and passivation dielectric stack consisting of a thin metal-organic chemical vapor deposition (MOCVD) grown in-situ Si 3 N 4 (3 nm) and a thick low-pressure chemical vapor deposition (LPCVD) grown Si 3 N 4 (30 nm) in AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transis...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 66; no. 8; pp. 3290 - 3295
Main Authors Sun, Hui, Wang, Maojun, Yin, Ruiyuan, Chen, Jianguo, Xue, Shuai, Luo, Jiansheng, Hao, Yilong, Chen, Dongmin
Format Journal Article
LanguageEnglish
Published IEEE 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A novel gate and passivation dielectric stack consisting of a thin metal-organic chemical vapor deposition (MOCVD) grown in-situ Si 3 N 4 (3 nm) and a thick low-pressure chemical vapor deposition (LPCVD) grown Si 3 N 4 (30 nm) in AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistor (MIS-HEMT) is proposed. The quality of the Si 3 N 4 /(Al)GaN interface and the effect on threshold voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {TH}} </tex-math></inline-formula>) instability and dynamic <inline-formula> <tex-math notation="LaTeX">{R}_{ \mathrm{\scriptscriptstyle ON}} </tex-math></inline-formula> in the MIS-HEMTs with/without the in-situ Si 3 N 4 layer are investigated by high-frequency capacitance-voltage (HFCV), quasi-static (QS) <inline-formula> <tex-math notation="LaTeX">{C} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula> (QSCV), time-of-fly (TOF) stress/measure, and QS <inline-formula> <tex-math notation="LaTeX">{I}_{\text {D}} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} </tex-math></inline-formula> methods. It is founded that the in-situ Si 3 N 4 interfacial layer is effective in improving the dielectric/III-N interface morphology. As a result, better <inline-formula> <tex-math notation="LaTeX">{V}_{\text {TH}} </tex-math></inline-formula> stability and lower <inline-formula> <tex-math notation="LaTeX">{R} _{ \mathrm{\scriptscriptstyle ON},\text {D}}/{R} _{ \mathrm{\scriptscriptstyle ON},\text {S}} </tex-math></inline-formula> ratio are observed in devices with the in-situ Si 3 N 4 interfacial layer due to the reduced density of traps close to the dielectric/III-N interface. Time-dependent dielectric breakdown and Weibull performance further verified that the proposed bilayer gate dielectric stack is a promising structure for the high-reliability power transistors.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2019.2919246