Fine-grained vehicle classificationusing deep residual networks with multiscale attention windows
Fine-grained vehicle classification is a challenging task due to the subtle differences between vehicle classes. Several successful approaches to fine-grained image classification rely on part-based models, where the image is classified according to discriminative object parts. Such approaches requi...
Saved in:
Published in | 2017 IEEE 19th International Workshop on Multimedia Signal Processing (MMSP) pp. 1 - 6 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fine-grained vehicle classification is a challenging task due to the subtle differences between vehicle classes. Several successful approaches to fine-grained image classification rely on part-based models, where the image is classified according to discriminative object parts. Such approaches require however that parts in the training images be manually annotated, a labor-intensive process. We propose a convolutional architecture realizing a transform network capable of discovering the most discriminative parts of a vehicle at multiple scales. We experimentally show that our architecture outperforms a baseline reference if trained on class labels only, and performs closely to a reference based on a part-model if trained on loose vehicle localization bounding boxes. |
---|---|
ISSN: | 2473-3628 |
DOI: | 10.1109/MMSP.2017.8122262 |