Non-vacuum deposition of aqueous-based CuInxGa1−xSe2 (CIGS) nanoparticles for solar applications
CuIn x Ga 1-x Se 2 (CIGS) as an absorber material in solar cells is already known to present a less toxic alternative to current solar cells based on toxic elements such as CdTe. CIGS developed as nanoparticles in solution are ideal for non-vacuum deposition methods which help achieve lower-cost sol...
Saved in:
Published in | 2011 37th IEEE Photovoltaic Specialists Conference pp. 001244 - 001247 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | CuIn x Ga 1-x Se 2 (CIGS) as an absorber material in solar cells is already known to present a less toxic alternative to current solar cells based on toxic elements such as CdTe. CIGS developed as nanoparticles in solution are ideal for non-vacuum deposition methods which help achieve lower-cost solar cells, compared to high vacuum deposition methods. This study investigates deposition, processing, and characterization of aqueous-based CIGS nanoparticles. The films are deposited via sono-deposition, spin coating method, and drop cast method. The as-deposited thin films are characterized via X-Ray Diffraction (XRD), Optical Microscope, and Scanning Electron Microscopy (SEM, and STEM). The films are then annealed via Pulsed Thermal Processing (PTP) technique, and post-PTP characterization shows change in the morphology of CIGS nanoparticles. |
---|---|
ISBN: | 9781424499663 1424499666 |
ISSN: | 0160-8371 |
DOI: | 10.1109/PVSC.2011.6186182 |