Optimal number of neurons for a two layer neural network model of a process
Neural networks are known as powerful tools to represent the essential properties of nonlinear processes because of their global approximation property. However, a key problem in modeling nonlinear processes by neural networks is the determination of neuron numbers. In this paper, a data based strat...
Saved in:
Published in | SICE Annual Conference 2011 pp. 2216 - 2221 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Neural networks are known as powerful tools to represent the essential properties of nonlinear processes because of their global approximation property. However, a key problem in modeling nonlinear processes by neural networks is the determination of neuron numbers. In this paper, a data based strategy for determining number of hidden layer neurons based on the Barrons work, describing function analysis and bicoherence nonlinearity measure is proposed. The proposed algorithm is evaluated for a pH neutralization process. It is shown that this algorithm has acceptable results. |
---|---|
ISBN: | 9781457707148 1457707144 |