Attenuation of Murine Collagen-Induced Arthritis by a Novel, Potent, Selective Small Molecule Inhibitor of IκB Kinase 2, TPCA-1 (2-[(Aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide), Occurs via Reduction of Proinflammatory Cytokines and Antigen-Induced T Cell Proliferation

Demonstration that IκB kinase 2 (IKK-2) plays a pivotal role in the nuclear factor-κB-regulated production of proinflammatory molecules by stimuli such as tumor necrosis factor (TNF)-α and interleukin (IL)-1 suggests that inhibition of IKK-2 may be beneficial in the treatment of rheumatoid arthri...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of pharmacology and experimental therapeutics Vol. 312; no. 1; p. 373
Main Authors Patricia L. Podolin, James F. Callahan, Brian J. Bolognese, Yue H. Li, Karey Carlson, T. Gregg Davis, Geoff W. Mellor, Christopher Evans, Amy K. Roshak
Format Journal Article
LanguageEnglish
Published American Society for Pharmacology and Experimental Therapeutics 01.01.2005
Online AccessGet full text

Cover

Loading…
More Information
Summary:Demonstration that IκB kinase 2 (IKK-2) plays a pivotal role in the nuclear factor-κB-regulated production of proinflammatory molecules by stimuli such as tumor necrosis factor (TNF)-α and interleukin (IL)-1 suggests that inhibition of IKK-2 may be beneficial in the treatment of rheumatoid arthritis. In the present study, we demonstrate that a novel, potent (IC 50 = 17.9 nM), and selective inhibitor of human IKK-2, 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1), inhibits lipopolysaccharide-induced human monocyte production of TNF-α, IL-6, and IL-8 with an IC 50 = 170 to 320 nM. Prophylactic administration of TPCA-1 at 3, 10, or 20 mg/kg, i.p., b.i.d., resulted in a dose-dependent reduction in the severity of murine collagen-induced arthritis (CIA). The significantly reduced disease severity and delay of disease onset resulting from administration of TPCA-1 at 10 mg/kg, i.p., b.i.d. were comparable to the effects of the antirheumatic drug, etanercept, when administered prophylactically at 4 mg/kg, i.p., every other day. Nuclear localization of p65, as well as levels of IL-1β, IL-6, TNF-α, and interferon-γ, were significantly reduced in the paw tissue of TPCA-1- and etanercept-treated mice. In addition, administration of TPCA-1 in vivo resulted in significantly decreased collagen-induced T cell proliferation ex vivo. Therapeutic administration of TPCA-1 at 20 mg/kg, but not at 3 or 10 mg/kg, i.p., b.i.d., significantly reduced the severity of CIA, as did etanercept administration at 12.5 mg/kg, i.p., every other day. These results suggest that reduction of proinflammatory mediators and inhibition of antigen-induced T cell proliferation are mechanisms underlying the attenuation of CIA by the IKK-2 inhibitor, TPCA-1.
ISSN:0022-3565
1521-0103
DOI:10.1124/jpet.104.074484