Attenuation of Murine Collagen-Induced Arthritis by a Novel, Potent, Selective Small Molecule Inhibitor of IκB Kinase 2, TPCA-1 (2-[(Aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide), Occurs via Reduction of Proinflammatory Cytokines and Antigen-Induced T Cell Proliferation
Demonstration that IκB kinase 2 (IKK-2) plays a pivotal role in the nuclear factor-κB-regulated production of proinflammatory molecules by stimuli such as tumor necrosis factor (TNF)-α and interleukin (IL)-1 suggests that inhibition of IKK-2 may be beneficial in the treatment of rheumatoid arthri...
Saved in:
Published in | The Journal of pharmacology and experimental therapeutics Vol. 312; no. 1; p. 373 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Society for Pharmacology and Experimental Therapeutics
01.01.2005
|
Online Access | Get full text |
Cover
Loading…
Summary: | Demonstration that IκB kinase 2 (IKK-2) plays a pivotal role in the nuclear factor-κB-regulated production of proinflammatory
molecules by stimuli such as tumor necrosis factor (TNF)-α and interleukin (IL)-1 suggests that inhibition of IKK-2 may be
beneficial in the treatment of rheumatoid arthritis. In the present study, we demonstrate that a novel, potent (IC 50 = 17.9 nM), and selective inhibitor of human IKK-2, 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1),
inhibits lipopolysaccharide-induced human monocyte production of TNF-α, IL-6, and IL-8 with an IC 50 = 170 to 320 nM. Prophylactic administration of TPCA-1 at 3, 10, or 20 mg/kg, i.p., b.i.d., resulted in a dose-dependent
reduction in the severity of murine collagen-induced arthritis (CIA). The significantly reduced disease severity and delay
of disease onset resulting from administration of TPCA-1 at 10 mg/kg, i.p., b.i.d. were comparable to the effects of the antirheumatic
drug, etanercept, when administered prophylactically at 4 mg/kg, i.p., every other day. Nuclear localization of p65, as well
as levels of IL-1β, IL-6, TNF-α, and interferon-γ, were significantly reduced in the paw tissue of TPCA-1- and etanercept-treated
mice. In addition, administration of TPCA-1 in vivo resulted in significantly decreased collagen-induced T cell proliferation
ex vivo. Therapeutic administration of TPCA-1 at 20 mg/kg, but not at 3 or 10 mg/kg, i.p., b.i.d., significantly reduced the
severity of CIA, as did etanercept administration at 12.5 mg/kg, i.p., every other day. These results suggest that reduction
of proinflammatory mediators and inhibition of antigen-induced T cell proliferation are mechanisms underlying the attenuation
of CIA by the IKK-2 inhibitor, TPCA-1. |
---|---|
ISSN: | 0022-3565 1521-0103 |
DOI: | 10.1124/jpet.104.074484 |