The β Subunit of the Sec61p Endoplasmic Reticulum Translocon Interacts with the Exocyst Complex in Saccharomyces cerevisiae
The exocyst is a conserved protein complex proposed to mediate vesicle tethering at the plasma membrane. Previously, we identified SEB1/SBH1, encoding the β subunit of the Sec61p ER translocation complex, as a multicopy suppressor of the sec15-1 mutant, defective for one subunit of the exocyst comp...
Saved in:
Published in | The Journal of biological chemistry Vol. 278; no. 23; p. 20946 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Society for Biochemistry and Molecular Biology
06.06.2003
|
Online Access | Get full text |
Cover
Loading…
Summary: | The exocyst is a conserved protein complex proposed to mediate vesicle tethering at the plasma membrane. Previously, we identified
SEB1/SBH1, encoding the β subunit of the Sec61p ER translocation complex, as a multicopy suppressor of the sec15-1 mutant, defective for one subunit of the exocyst complex. Here we show the functional and physical interaction between
components of endoplasmic reticulum translocon and the exocytosis machinery. We show that overexpression of SEB1 suppresses the growth defect in all exocyst sec mutants. In addition, overexpression of SEC61 or SSS1 encoding the other two components of the Sec61p complex suppressed the growth defects of several exocyst mutants. Seb1p
was coimmunoprecipitated from yeast cell lysates with Sec15p and Sec8p, components of the exocyst complex, and with Sec4p,
a secretory vesicle associated Rab GTPase that binds to Sec15p and is essential for exocytosis. The interaction between
Seb1p and Sec15p was abolished in sec15-1 mutant and was restored upon SEB1 overexpression. Furthermore, in wild type cells overexpression of SEB1 as well as SEC4 resulted in increased production of secreted proteins. These findings propose a novel functional and physical link between
the endoplasmic reticulum translocation complex and the exocyst. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M213111200 |