Inhibition of Anti-IgM-induced Translocation of Protein Kinase C βI Inhibits ERK2 Activation and Increases Apoptosis

Expression of the COOH-terminal residues 179–330 of the LSP1 protein in the LSP1 + B-cell line W10 increases anti-IgM- or ionomycin-induced apoptosis, suggesting that expression of this LSP1 truncate (B-LSP1) interferes with a Ca 2+ -dependent step in anti-IgM signaling. Here we show that inhibiti...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 276; no. 27; p. 24506
Main Authors Ming-Yu Cao, Fukiko Shinjo, Svinda Heinrichs, Jae-Won Soh, Jenny Jongstra-Bilen, Jan Jongstra
Format Journal Article
LanguageEnglish
Published American Society for Biochemistry and Molecular Biology 06.07.2001
Online AccessGet full text

Cover

Loading…
More Information
Summary:Expression of the COOH-terminal residues 179–330 of the LSP1 protein in the LSP1 + B-cell line W10 increases anti-IgM- or ionomycin-induced apoptosis, suggesting that expression of this LSP1 truncate (B-LSP1) interferes with a Ca 2+ -dependent step in anti-IgM signaling. Here we show that inhibition of Ca 2+ -dependent conventional protein kinase C (cPKC) isoforms with Gö6976 increases anti-IgM-induced apoptosis of W10 cells and that expression of B-LSP1 inhibits translocation of PKCβI but not of PKCβII or PKCα to the plasma membrane. The increased anti-IgM-induced apoptosis is partially reversed by overexpression of PKCβI. This shows that the B-LSP1-mediated inhibition of PKCβI leads to increased anti-IgM-induced apoptosis. Expression of constitutively active PKCβI protein in W10 cells activates the mitogen-activated protein kinase ERK2, whereas expression of B-LSP1 inhibits anti-IgM-induced activation of ERK2, suggesting that anti-IgM-activated PKCβI is involved in the activation of ERK2 and that inhibition of ERK2 activation contributes to the increased anti-IgM-induced apoptosis. Pull-down assays show that LSP1 interacts with PKCβI but not with PKCβII or PKCα in W10 cell lysates, while in vitro LSP1 and B-LSP1 bind directly to PKCβI. Thus, B-LSP1 is a unique reagent that binds PKCβI and inhibits anti-IgM-induced PKCβI translocation, leading to inhibition of ERK2 activation and increased apoptosis.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M103883200