Prédire la structure des forêts tropicales humides calédoniennes : analyse texturale de la canopée sur des images pléiades
Large-scale characterization of tropical rainforest is a challenge for their conservation and management. Very high spatial resolution images as provided by the Pléiades satellites offer new opportunities to study the structural organization of heterogeneous rainforests with limited accessibility. I...
Saved in:
Published in | Revue française de photogrammétrie et de télédétection no. 209; pp. 141 - 147 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Société Française de Photogrammétrie et de Télédétection
2015
|
Series | Pléiades Days 2014 (2ème partie) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Large-scale characterization of tropical rainforest is a challenge for their conservation and management. Very high spatial resolution images as provided by the Pléiades satellites offer new opportunities to study the structural organization of heterogeneous rainforests with limited accessibility. In this study, we have evaluated the potential of Pléiades images to map structural parameters of New Caledonian rainforests by analyzing texture of forest canopies. We have applied the Fourier transform textural ordination (FOTO) method to very high spatial resolution images to compute texture indices of canopy grain (i.e. a combination of size distribution and spatial pattern of tree crowns). The results have showed that this method was promising to isolate the rainforest from other types of vegetation, and to highlight their structural diversity on a large scale. Finally, this case study showed that the use of Pléiades images is promising to predict the structure of rainforests.
Cartographier et classifier les forêts denses humides (FDH) selon une typologie structurale objective est un enjeu majeur pour leur conservation et leur gestion. Les principales contraintes dans l'étude des FDH sont dues à leur forte hétérogénéité et à leur faible accessibilité. Les images satellitaires Pléiades offrent de nouvelles opportunités pour l'étude, à large échelle, de l'organisation structurale de ces forêts. Dans cet article nous avons évalué à travers une étude de cas en Nouvelle-Calédonie leur potentiel pour construire une typologie des FDH à partir d'une analyse de texture de la canopée. La méthode FOTO (FOurier-based Textural Ordination) a été appliquée à des images à très haute résolution spatiale pour produire des indices de texture du grain de la canopée, qui associent la distribution des tailles des couronnes des arbres et leur répartition spatiale. Les résultats ont montré que cette méthode permettait, d'une part d'isoler la FDH des autres formations végétales, et d'autre part de mettre en évidence leur diversité structurale à large échelle. Enfin, cette étude de cas a montré que l'utilisation d'images Pléiades est prometteuse pour prédire la structure des forêts denses humides. Mots-clés : Structure de la canopée, analyse de texture, forêt dense humide, Nouvelle-Calédonie, télédétection, image à très haute résolution Abstract Large-scale characterization of tropical rainforest is a challenge for their conservation and management. Very high spatial resolution images as provided by the Pléiades satellites offer new opportunities to study the structural organization of heterogeneous rainforests with limited accessibility. In this study, we have evaluated the potential of Pléiades images to map structural parameters of New Caledonian rainforests by analyzing texture of forest canopies. We have applied the Fourier transform textural ordination (FOTO) method to very high spatial resolution images to compute texture indices of canopy grain (i.e. a combination of size distribution and spatial pattern of tree crowns). The results have showed that this method was promising to isolate the rainforest from other types of vegetation, and to highlight their structural diversity on a large scale. Finally, this case study showed that the use of Pléiades images is promising to predict the structure of rainforests. |
---|---|
ISSN: | 1768-9791 2426-3974 |