Potential of model cakes to study reaction kinetics through the dynamic on-line extraction of volatile markers and TD-GC-MS analysis

This study presents a novel strategy for the dynamic analysis of volatile compounds extracted from baking vapors using a fit-for-purpose model cake. This model imitates a real sponge cake in terms of structure and processing but it is not reactive towards Maillard and caramelization reactions. When...

Full description

Saved in:
Bibliographic Details
Published inFood research international Vol. 132
Main Authors Lee, Jeehyun, Bousquières, J, Descharles, N, Roux, Stéphanie, Michon, C, Rega, Barbara, Bonazzi, Catherine
Format Journal Article
LanguageEnglish
Published Elsevier 2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study presents a novel strategy for the dynamic analysis of volatile compounds extracted from baking vapors using a fit-for-purpose model cake. This model imitates a real sponge cake in terms of structure and processing but it is not reactive towards Maillard and caramelization reactions. When implemented with precursors (glucose (G) or glucose + leucine (G + L)), the reactions are activated and volatile markers can be monitored dynamically during baking. A method for the on-line sampling of vapors during baking using sorbent tubes coupled to thermal desorption (TD-GC-MS) has been developed and proven to be an appropriate and rapid technique to analyze a large number of volatile compounds within a broad range of physical and chemical characteristics. Volatile markers such as acetic acid, furfural, furfuryl alcohol and 5-hydroxymethylfurfual were identified using both models: glucose (G) and glucose + leucine (G + L) because they arise from both caramelization and the Maillard reaction. On the other hand, 3-methylbutanal and 2,5-dimethylpyrazine were only identified in the (G + L) model cake as they arise from the Strecker degradation pathway induced by the presence of leucine. Moreover, the relative abundance of all markers of reactions covers a broad range. On-line sampling coupled to TD-GC-MS enabled the collection of kinetic data on these markers throughout the baking operation and discrimination of the two formulas (G vs G + L) and two baking temperatures (170 °C and 200 °C) used. These results offer promise for the further use of this approach to study reaction kinetics in model cakes.
ISSN:0963-9969
DOI:10.1016/j.foodres.2020.109087