Hacia un sistema de ponderación supervisado de bases de datos no estructuradas utilizadas en la construcción de diccionarios especializados
El artículo propone la arquitectura de un sistema que usa valores previamente aprendidos para reordenar resultados de búsquedas en bases de datos no estructuradas al construir diccionarios especializados. Un recurso común en la construcción de diccionarios, las bases de datos no estructuradas han si...
Saved in:
Published in | Revista FI-UPTC Vol. 24; no. 38; p. 97 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Universidad Pedagogica y Tecnologica de Colombia. Facultad de Ingenieria
01.01.2015
|
Online Access | Get full text |
Cover
Loading…
Summary: | El artículo propone la arquitectura de un sistema que usa valores previamente aprendidos para reordenar resultados de búsquedas en bases de datos no estructuradas al construir diccionarios especializados. Un recurso común en la construcción de diccionarios, las bases de datos no estructuradas han sido útiles ya que proveen información sobre unidades léxicas, tal como la frecuencia o ejemplos de uso de las mismas. Sin embargo, en la construcción de diccionarios especializados, cuya selección de elementos léxicos no depende de la frecuencia, el uso de estas bases de datos queda restringido a la simple ejemplificación. Incluso en esta tarea, la información de las bases de datos no estructuradas puede no ser muy útil si se buscan unidades léxicas con un uso especializado pero con varios otros significados que producen largas listas de resultados. Ante este problema, estas listas pueden ser ponderadas usando un modelo de aprendizaje automático supervisado que se apoye de los resultados previamente útiles. La recolección de un vasto conjunto de datos de alta calidad para este sistema de ponderación es reportada aquí. Finalmente, se propone la arquitectura de tal sistema, el cual representa una herramienta sin precedentes en la lexicografía especializada. |
---|---|
ISSN: | 0121-1129 |