4Ith/I Generation Biomaterials Based on PVDF-Hydroxyapatite Composites Produced by Electrospinning: Processing and Characterization
Biomaterials that effectively act in biological systems, as in treatment and healing of damaged or lost tissues, must be able to mimic the properties of the body's natural tissues in its various aspects (chemical, physical, mechanical and surface). These characteristics influence cell adhesion...
Saved in:
Published in | Polymers Vol. 14; no. 19 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Biomaterials that effectively act in biological systems, as in treatment and healing of damaged or lost tissues, must be able to mimic the properties of the body's natural tissues in its various aspects (chemical, physical, mechanical and surface). These characteristics influence cell adhesion and proliferation and are crucial for the success of the treatment for which a biomaterial will be required. In this context, the electrospinning process has gained prominence in obtaining fibers of micro- and nanometric sizes from polymeric solutions aiming to produce scaffolds for tissue engineering. In this manuscript, poly(vinylidene fluoride) (PVDF) was used as a polymeric matrix for the manufacture of piezoelectric scaffolds, exploring the formation of the β-PVDF piezoelectric phase. Micro- and nanometric hydroxyapatite (HA) particles were incorporated as a dispersed phase in this matrix, aiming to produce multifunctional composite membranes also with bioactive properties. The results show that it is possible to produce membranes containing micro- and nanofibers of the composite by the electrospinning process. The HA particles show good dispersion in the polymer matrix and predominance of β-PVDF phase. Also, the composite showed apatite growth on its surface after 21 days of immersion in simulated body fluid (SBF). Tests performed on human fibroblasts culture revealed that the electrospun membranes have low cytotoxicity attesting that the composite shows great potential to be used in biomedical applications as bone substitutions and wound healing. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym14194190 |