Influence of Biomass Absorptivity on the Process of Sinter Charge Pelletisation

Capillary water absorption of materials is a very important factor in the process of pre-treatment of fine-grained materials. Materials that are in a moisturized state capable of forming a firm, compact pellet are, thanks to this particular physical property, suitable for utilisation in sinter charg...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 10; no. 19
Main Authors Dzupkova, Ma, Frohlichova, Maria, Legemza, Jaroslav, Findorak, Robert, Hudak, Jozef
Format Journal Article
LanguageEnglish
Published MDPI AG 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Capillary water absorption of materials is a very important factor in the process of pre-treatment of fine-grained materials. Materials that are in a moisturized state capable of forming a firm, compact pellet are, thanks to this particular physical property, suitable for utilisation in sinter charge preparation within the process of sintering iron-ore raw materials. The pelletising ability of coke dust is generally known and coke dust exhibits good pelletisability. From the ecological point of view, an alternative to coke dust is currently biomass, which has a great potential for industrial applications, including use in the agglomeration process. Understanding of how biomass behaves during pre-pelletisation is very important and for the sintering process, it is essential. The purpose of pre-pelletisation of the sinter charge is to achieve its optimal permeability in the sintering process. The experiment described in the article was carried out using wood biomass-oak and pine sawdust, as well as plant biomass-Miscanthus sinensis and Lavandula angustifolia. The evaluation was carried out by applying the capillary water absorption test and the free-fall drop test. As different types of biomass have different chemical compositions, heating capacities, grain morphologies, and chemical and physical properties, the testing was carried out with several types of biomass. The capillary water absorption was examined in terms of different granulometries, and the impact of the type of liquid medium was analysed. It was observed that different types of biomass differ in their ability to absorb liquids. Another finding was that the type of a liquid medium had a significant effect on the pelletising ability of biomass, which was determined by the surface tension and the ability to form liquid bridges between the grains. Research results indicate an excellent pelletising ability of the Miscanthus sinensis grass. The wettability of oak and pine sawdust determines its application in the pelletising process. It may be concluded, based on the research, that Lavandula angustifolia is not a suitable alternative to coke dust due to its low ability to form pellets. Keywords: wettability; pelletisability; biomass; fuel; sintering process; permeability
ISSN:2076-3417
2076-3417
DOI:10.3390/appl0196780