A Tunable Dual-Passband Microwave Photonic Filter Based on Optically Injected Distributed Feedback Semiconductor Lasers and Dual-Output Mach-Zehnder Modulator
In this paper, a novel approach to achieving a wideband tunable dual- passband microwave photonic filter (MPF) is proposed based on optical-injected distributed feedback (DFB) semiconductor lasers and a dual-output Mach-Zehnder modulator (DOMZM). The fundamental concepts for realizing the MPF are th...
Saved in:
Published in | Applied sciences Vol. 10; no. 10 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
15.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, a novel approach to achieving a wideband tunable dual- passband microwave photonic filter (MPF) is proposed based on optical-injected distributed feedback (DFB) semiconductor lasers and a dual-output Mach-Zehnder modulator (DOMZM). The fundamental concepts for realizing the MPF are the wavelength-selective amplification effect and the period-one oscillation state under optically injected DFB lasers. These effects provide a widely tunable range of center frequency, along with high flexibility and low insertion loss. The proposed MPF is experimentally demonstrated, showing that the dual-passband center frequency in the MPF can be tuned independently from 19 to 37 GHz by adjusting the detuning frequency and injection ratio. Meanwhile, the insertion loss of the system is about 15 dB when there is no optical or electrical amplifier in the MPF link. The out-of-band suppression ratio of the MPF is more than 20 dB, which can be improved by adjusting the power of the two optical signals. Keywords: microwave photonic filter; dual-passband filter; optically injected DFB laser; wavelength-selective amplification |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/appl0103631 |