Arabidosis signal transduction mutant defective in chemically and biologically induced disease resistance

Plants possess multiple resistance mechanisms that guard against pathogen attack. Among these are inducible systems such as systemic acquired resistance (SAR). SAR is activated by pathogen exposure and leads to an increase in salicylic acid (SA), high-level expression of SAR-related genes, and resis...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 92; no. 14
Main Authors Delaney, T.P. (Cornell University, Ithaca, NY.), Friedrich, L, Ryals, J.A
Format Journal Article
LanguageEnglish
Published 03.07.1995
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Plants possess multiple resistance mechanisms that guard against pathogen attack. Among these are inducible systems such as systemic acquired resistance (SAR). SAR is activated by pathogen exposure and leads to an increase in salicylic acid (SA), high-level expression of SAR-related genes, and resistance to a spectrum of pathogens. To identify components of the signal transduction pathways regulating SAR, a mutant screen was developed that uses 2,6-dichloroisonicotinic acid as an activator of SAR gene expression and pathogen resistance, followed by assays for resistance to the fungal pathogen Peronospora parasitica. Mutants from this screen were subsequently examined to assess their defense responses. We describe here a recessive mutation that causes a phenotype of insensitivity to chemical and biological inducers of SAR genes and resistance. These data indicate the existence of a common signaling pathway that couples these diverse stimuli to induction of SAR genes and resistance. Because of its non-inducible immunity phenotype, we call this mutant nim1. Although nim1 plants fail to respond to SA, they retain the ability to accumulate wild-type levels of SA, a probable endogenous signal for SAR. Further, the ability of nim1 plants to support growth of normally incompatible races of a fungal pathogen indicates a role for this pathway in expression of genetically determined resistance, consistent with earlier findings for transgenic plants engineered to break down SA. These results suggest that the wild-type NIM1 gene product functions in a pathway regulating acquired resistance, at a position downstream of SA accumulation and upstream of SAR gene induction and expression of resistance
Bibliography:9554761
F30
H20
ISSN:0027-8424
1091-6490