Mechanisms of contaminant transport in a multi‐basin lake

Tracer studies are combined with a three‐dimensional (3‐D) numerical modeling study to provide a robust description of hydrodynamic and particle transport in Clear Lake, a multi‐basin, polymictic lake in northern California, USA. The focus is on the mechanisms of transport of contaminants away...

Full description

Saved in:
Bibliographic Details
Published inEcological applications Vol. 18; pp. A72 - A87
Main Authors Rueda, Francisco J, S. Geoffrey Schladow, Jordan F. Clark
Format Journal Article
LanguageEnglish
Published Ecological Society of America 2008
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Tracer studies are combined with a three‐dimensional (3‐D) numerical modeling study to provide a robust description of hydrodynamic and particle transport in Clear Lake, a multi‐basin, polymictic lake in northern California, USA. The focus is on the mechanisms of transport of contaminants away from the vicinity of the Sulphur Bank Mercury Mine and out of the Oaks Arm to the rest of the lake and the hydraulic connection existing among the sub‐basins of the lake. Under stratified conditions, the rate of spreading of the tracer was found to be large. In less than a week the tracer spread from the eastern end of the Oaks Arm to the other basins. Under non‐stratified conditions, the tracer spread more slowly and had a concentration that gradually diminished with distance from the injection location. The numerical results showed that the mechanisms accounting for these observed patterns occur in pulses, with maximum rates coinciding with the stratified periods. Stratification acts first to enhance the currents by inhibiting vertical momentum mixing and decoupling the surface currents from bottom friction. The diversity of the flow structures that results from the interaction of the wind and the density fields in the lake is responsible for the high dispersion rates. Contaminants originating in the Oaks Arm are shown to be transported into the Lower Arm following the surface currents and into the Upper Arm mainly through the bottom currents. It was also shown that, under stratified conditions, both the baroclinic (density driven) gradients and the wind forcing act jointly to exacerbate the interbasin exchange.
Bibliography:http://dx.doi.org/10.1890/06-1617.1
ISSN:1051-0761
1939-5582