Leaf factors affecting the relationship between chlorophyll fluorescence and the rate of photosynthesis electron transport as determined from CO2 uptake

CO2 uptake and chlorophyll fluorescence were measured under non-photorespiratory conditions in leaves from 14 plant species. The rate of CO2-dependent electron transport (JCO2) was calculated as four times rate of gross photosynthesis. The quantum yield of electron transport in photosystem II was es...

Full description

Saved in:
Bibliographic Details
Published inJournal of plant physiology Vol. 160; no. 10; pp. 1131 - 1139
Main Authors Tsuyama, M, Shibata, M, Kobayashi, Y
Format Journal Article
LanguageEnglish
Published 2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:CO2 uptake and chlorophyll fluorescence were measured under non-photorespiratory conditions in leaves from 14 plant species. The rate of CO2-dependent electron transport (JCO2) was calculated as four times rate of gross photosynthesis. The quantum yield of electron transport in photosystem II was estimated from the ratio deltaF/Fm', where deltaF is the difference between steady-state and maximal fluorescence in the light. As photon flux density (PFD) increased, JCO2 increased linearly first, and then reached saturation. The product (deltaF/Fm')PFD, which is a function of electron transport rate, showed a similar response. Therefore, the relationship between (deltaF/Fm')PFD versus JCO2 was proportional. However, under high light, a linear correlation was not always maintained. Factors affecting the linear correlation were analyzed by measuring CO2 uptake and chlorophyll fluorescence under illumination from either the upper (adaxial) or lower (abaxial) leaf surface, and by using plants with anatomically symmetric leaves having palisade tissues on both sides. Consequently, it was shown that the parameter deltaF/Fm' is based on chlorophyll fluorescence emitted from chloroplasts present near the illuminated surface. Further, it was suggested that this restriction of the origin of fluorescence actually measured is significant in a leaf with high chlorophyll content, resulting in the deviation from linearity in the relationship between JCO2 and (deltaF/Fm')PFD.
ISSN:0176-1617
1618-1328