effect of the phospholipase D-antagonist 1-butanol on seedling development and microtubule organisation in Arabidopsis

The organisation of plant microtubules into distinct arrays during the cell cycle requires interactions with partner proteins. Having recently identified a 90-kDa phospholipase D (PLD) that associates with microtubules and the plasma membrane [Gardiner et al. (2001) Plant Cell 13: 2143], we exposed...

Full description

Saved in:
Bibliographic Details
Published inPlant and cell physiology Vol. 44; no. 7; pp. 687 - 696
Main Authors Gardiner, J, Collings, D.A, Harper, J.D.I, Mare, J
Format Journal Article
LanguageEnglish
Published 2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The organisation of plant microtubules into distinct arrays during the cell cycle requires interactions with partner proteins. Having recently identified a 90-kDa phospholipase D (PLD) that associates with microtubules and the plasma membrane [Gardiner et al. (2001) Plant Cell 13: 2143], we exposed seeds and young seedlings of Arabidopsis to 1-butanol, a specific inhibitor of PLD-dependent production of the signalling molecule phosphatidic acid (PA). When added to agar growth media, 0.2% 1-butanol strongly inhibited the emergence of the radicle and cotyledons, while 0.4% 1-butanol effectively blocked germination. When normal seedlings were transferred onto media containing 0.2% and 0.4% 1-butanol, the inhibitor retarded root growth by about 40% and 90%, respectively, by reducing cell elongation. Inhibited plants showed significant swelling in the root elongation zone, bulbous or branched root hairs, and modified cotyledon morphology. Confocal immunofluorescence microscopy of root tips revealed that 1-butanol disrupted the organisation of interphase cortical microtubules. Butanol isomers that do not inhibit PLD-dependent PA production, 2- and 3-butanol, had no effect on seed germination, seedling growth, or microtubule organisation. We propose that production of PA by PLD may be required for normal microtubule organisation and hence normal growth in Arabidopsis.
ISSN:0032-0781
1471-9053